Contents

List of Figures xiii
List of Tables xxi
Contributing Authors xxiii
Introduction xxix

1 Audio quality determination based on perceptual measurement techniques 1
John G. Beerends

1.1 Introduction 1
1.2 Basic measuring philosophy 2
1.3 Subjective versus objective perceptual testing 6
1.4 Psychoacoustic fundamentals of calculating the internal sound representation 8
1.5 Computation of the internal sound representation 13
1.6 The perceptual audio quality measure (PAQM) 17
1.7 Validation of the PAQM on speech and music codec databases 20
1.8 Cognitive effects in judging audio quality 22
1.9 ITU Standardization 29
1.9.1 ITU-T, speech quality 30
1.9.2 ITU-R, audio quality 35
1.10 Conclusions 37

2 Perceptual Coding of High Quality Digital Audio 39
Karlheinz Brandenburg

2.1 Introduction 39
2.2 Some Facts about Psychoacoustics
 2.2.1 Masking in the Frequency Domain 42
 2.2.2 Masking in the Time Domain 44
 2.2.3 Variability between listeners 45

2.3 Basic ideas of perceptual coding
 2.3.1 Basic block diagram 47
 2.3.2 Additional coding tools 49
 2.3.3 Perceptual Entropy 50

2.4 Description of coding tools
 2.4.1 Filter banks 50
 2.4.2 Perceptual models 59
 2.4.3 Quantization and coding 63
 2.4.4 Joint stereo coding 68
 2.4.5 Prediction 72
 2.4.6 Multi-channel: to matrix or not to matrix 73

2.5 Applying the basic techniques: real coding systems
 2.5.1 Pointers to early systems (no detailed description) 74
 2.5.2 MPEG Audio 75
 2.5.3 MPEG-2 Advanced Audio Coding (MPEG-2 AAC) 79
 2.5.4 MPEG-4 Audio 81

2.6 Current Research Topics 82

2.7 Conclusions 83

3 Reverberation Algorithms

William G. Gardner

3.1 Introduction 85
 3.1.1 Reverberation as a linear filter 86
 3.1.2 Approaches to reverberation algorithms 87

3.2 Physical and Perceptual Background 88
 3.2.1 Measurement of reverberation 89
 3.2.2 Early reverberation 90
 3.2.3 Perceptual effects of early echoes 93
 3.2.4 Reverberation time 94
 3.2.5 Modal description of reverberation 95
 3.2.6 Statistical model for reverberation 97
 3.2.7 Subjective and objective measures of late reverberation 98
 3.2.8 Summary of framework 100

3.3 Modeling Early Reverberation 100

3.4 Comb and Allpass Reverberators 105
 3.4.1 Schroeder’s reverberator 105
 3.4.2 The parallel comb filter 108
 3.4.3 Modal density and echo density 109
 3.4.4 Producing uncorrelated outputs 111
 3.4.5 Moorer’s reverberator 112
 3.4.6 Allpass reverberators 113

3.5 Feedback Delay Networks 116
3.5.1 Jot's reverberator
119
3.5.2 Unitary feedback loops
121
3.5.3 Absorptive delays
122
3.5.4 Waveguide reverberators
123
3.5.5 Lossless prototype structures
125
3.5.6 Implementation of absorptive and correction filters
128
3.5.7 Multirate algorithms
128
3.5.8 Time-varying algorithms
129

3.6 Conclusions
130

4 Digital Audio Restoration
133

Simon Godsill, Peter Rayner and Olivier Cappé

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>134</td>
</tr>
<tr>
<td>4.2 Modelling of audio signals</td>
<td>135</td>
</tr>
<tr>
<td>4.3 Click Removal</td>
<td>137</td>
</tr>
<tr>
<td>4.4 Correlated Noise Pulse Removal</td>
<td>155</td>
</tr>
<tr>
<td>4.5 Background noise reduction</td>
<td>163</td>
</tr>
<tr>
<td>4.6 Pitch variation defects</td>
<td>177</td>
</tr>
<tr>
<td>4.7 Reduction of Non-linear Amplitude Distortion</td>
<td>182</td>
</tr>
<tr>
<td>4.8 Other areas</td>
<td>192</td>
</tr>
<tr>
<td>4.9 Conclusion and Future Trends</td>
<td>193</td>
</tr>
</tbody>
</table>

5 Digital Audio System Architecture
195

Mark Kahrs

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>195</td>
</tr>
<tr>
<td>5.2 Input/Output</td>
<td>196</td>
</tr>
<tr>
<td>5.3 Processing</td>
<td>203</td>
</tr>
<tr>
<td>5.4 Conclusion and Future Trends</td>
<td>208</td>
</tr>
</tbody>
</table>
5.3.4 Processors

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>209</td>
</tr>
</tbody>
</table>

5.4 Conclusion

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>234</td>
</tr>
</tbody>
</table>

6 Signal Processing for Hearing Aids

James M. Kates

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>236</td>
</tr>
<tr>
<td>6.2 Hearing and Hearing Loss</td>
<td>237</td>
</tr>
<tr>
<td>6.2.1 Outer and Middle Ear</td>
<td>238</td>
</tr>
<tr>
<td>6.3 Inner Ear</td>
<td>239</td>
</tr>
<tr>
<td>6.3.1 Retrocochlear and Central Losses</td>
<td>247</td>
</tr>
<tr>
<td>6.3.2 Summary</td>
<td>248</td>
</tr>
<tr>
<td>6.4 Linear Amplification</td>
<td>248</td>
</tr>
<tr>
<td>6.4.1 System Description</td>
<td>249</td>
</tr>
<tr>
<td>6.4.2 Dynamic Range</td>
<td>251</td>
</tr>
<tr>
<td>6.4.3 Distortion</td>
<td>252</td>
</tr>
<tr>
<td>6.4.4 Bandwidth</td>
<td>253</td>
</tr>
<tr>
<td>6.5 Feedback Cancellation</td>
<td>253</td>
</tr>
<tr>
<td>6.6 Compression Amplification</td>
<td>255</td>
</tr>
<tr>
<td>6.6.1 Single-Channel Compression</td>
<td>256</td>
</tr>
<tr>
<td>6.6.2 Two-Channel Compression</td>
<td>260</td>
</tr>
<tr>
<td>6.6.3 Multi-Channel Compression</td>
<td>261</td>
</tr>
<tr>
<td>6.7 Single-Microphone Noise Suppression</td>
<td>263</td>
</tr>
<tr>
<td>6.7.1 Adaptive Analog Filters</td>
<td>263</td>
</tr>
<tr>
<td>6.7.2 Spectral Subtraction</td>
<td>264</td>
</tr>
<tr>
<td>6.7.3 Spectral Enhancement</td>
<td>266</td>
</tr>
<tr>
<td>6.8 Multi-Microphone Noise Suppression</td>
<td>267</td>
</tr>
<tr>
<td>6.8.1 Directional Microphone Elements</td>
<td>267</td>
</tr>
<tr>
<td>6.8.2 Two-Microphone Adaptive Noise Cancellation</td>
<td>268</td>
</tr>
<tr>
<td>6.8.3 Arrays with Time-Invariant Weights</td>
<td>269</td>
</tr>
<tr>
<td>6.8.4 Two-Microphone Adaptive Arrays</td>
<td>269</td>
</tr>
<tr>
<td>6.8.5 Multi-Microphone Adaptive Arrays</td>
<td>271</td>
</tr>
<tr>
<td>6.8.6 Performance Comparison in a Real Room</td>
<td>273</td>
</tr>
<tr>
<td>6.9 Cochlear Implants</td>
<td>275</td>
</tr>
<tr>
<td>6.10 Conclusions</td>
<td>276</td>
</tr>
</tbody>
</table>

7 Time and Pitch scale modification of audio signals

Jean Laroche

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>279</td>
</tr>
<tr>
<td>7.2 Notations and definitions</td>
<td>282</td>
</tr>
<tr>
<td>7.2.1 An underlying sinusoidal model for signals</td>
<td>282</td>
</tr>
<tr>
<td>7.2.2 A definition of time-scale and pitch-scale modification</td>
<td>282</td>
</tr>
<tr>
<td>7.3 Frequency-domain techniques</td>
<td>285</td>
</tr>
<tr>
<td>7.3.1 Methods based on the short-time Fourier transform</td>
<td>285</td>
</tr>
<tr>
<td>7.3.2 Methods based on a signal model</td>
<td>293</td>
</tr>
<tr>
<td>7.4 Time-domain techniques</td>
<td>293</td>
</tr>
</tbody>
</table>
7.4.1 Principle
7.4.2 Pitch independent methods
7.4.3 Periodicity-driven methods

7.5 Formant modification
7.5.1 Time-domain techniques
7.5.2 Frequency-domain techniques

7.6 Discussion
7.6.1 Generic problems associated with time or pitch scaling
7.6.2 Time-domain vs frequency-domain techniques

8 Wavetable Sampling Synthesis
Dana C. Massie

8.1 Background and introduction
8.1.1 Transition to Digital
8.1.2 Flourishing of Digital Synthesis Methods
8.1.3 Metrics: The Sampling - Synthesis Continuum
8.1.4 Sampling vs. Synthesis

8.2 Wavetable Sampling Synthesis
8.2.1 Playback of digitized musical instrument events.
8.2.2 Entire note - not single period
8.2.3 Pitch Shifting Technologies
8.2.4 Looping of sustain
8.2.5 Multi-sampling
8.2.6 Enveloping
8.2.7 Filtering
8.2.8 Amplitude variations as a function of velocity
8.2.9 Mixing or summation of channels
8.2.10 Multiplexed wavetables

8.3 Conclusion

9 Audio Signal Processing Based on Sinusoidal Analysis/Synthesis
T.F. Quatieri and R. J. McAulay

9.1 Introduction
9.2 Filter Bank Analysis/Synthesis
9.2.1 Additive Synthesis
9.2.2 Phase Vocoder
9.2.3 Motivation for a Sine-Wave Analysis/Synthesis

9.3 Sinusoidal-Based Analysis/Synthesis
9.3.1 Model
9.3.2 Estimation of Model Parameters
9.3.3 Frame-to-Frame Peak Matching
9.3.4 Synthesis
9.3.5 Experimental Results
9.3.6 Applications of the Baseline System
9.3.7 Time-Frequency Resolution

9.4 Source/Filter Phase Model
Applications of DSP to Audio and Acoustics

9.4.1 Model
9.4.2 Phase Coherence in Signal Modification
9.4.3 Revisiting the Filter Bank-Based Approach

9.5 Additive Deterministic/Stochastic Model
9.5.1 Model
9.5.2 Analysis/Synthesis
9.5.3 Applications

9.6 Signal Separation Using a Two-Voice Model
9.6.1 Formulation of the Separation Problem
9.6.2 Analysis and Separation
9.6.3 The Ambiguity Problem
9.6.4 Pitch and Voicing Estimation

9.7 FM Synthesis
9.7.1 Principles
9.7.2 Representation of Musical Sound
9.7.3 Parameter Estimation
9.7.4 Extensions

9.8 Conclusions

10 Principles of Digital Waveguide Models of Musical Instruments

Julius O. Smith III

10.1 Introduction
10.1.1 Antecedents in Speech Modeling
10.1.2 Physical Models in Music Synthesis
10.1.3 Summary

10.2 The Ideal Vibrating String
10.2.1 The Finite Difference Approximation
10.2.2 Traveling-Wave Solution

10.3 Sampling the Traveling Waves
10.3.1 Relation to Finite Difference Recursion

10.4 Alternative Wave Variables
10.4.1 Spatial Derivatives
10.4.2 Force Waves
10.4.3 Power Waves
10.4.4 Energy Density Waves
10.4.5 Root-Power Waves

10.5 Scattering at an Impedance Discontinuity
10.5.1 The Kelly-Lochbaum and One-Multiply Scattering Junctions
10.5.2 Normalized Scattering Junctions
10.5.3 Junction Passivity

10.6 Scattering at a Loaded Junction of N Waveguides

10.7 The Lossy One-Dimensional Wave Equation
10.7.1 Loss Consolidation
10.7.2 Frequency-Dependent Losses

10.8 The Dispersive One-Dimensional Wave Equation

10.9 Single-Reed Instruments