TABLE OF CONTENTS

Dedication v

Table of Contents vii

Preface xvii

Chapter 1 Overview of Wireless Networks

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Signal Coverage</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Propagation Mechanisms</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Multipath</td>
<td>2</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Delay Spread</td>
<td>3</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Coherence Bandwidth</td>
<td>4</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Doppler Spread</td>
<td>5</td>
</tr>
<tr>
<td>1.2.5</td>
<td>Shadow Fading</td>
<td>6</td>
</tr>
<tr>
<td>1.2.6</td>
<td>Radio Propagation Modeling</td>
<td>6</td>
</tr>
<tr>
<td>1.2.7</td>
<td>Narrowband and Wideband Channel Models</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Signal Attenuation</td>
<td>7</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Received Power Characteristics</td>
<td>7</td>
</tr>
<tr>
<td>1.3.2</td>
<td>High Frequency Propagation</td>
<td>8</td>
</tr>
<tr>
<td>1.4</td>
<td>Channel Characteristics</td>
<td>9</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Gaussian Channel</td>
<td>9</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Rayleigh Channel</td>
<td>9</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Rician Channel</td>
<td>10</td>
</tr>
<tr>
<td>1.5</td>
<td>Fading Mitigation Methods</td>
<td>10</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Antenna Diversity</td>
<td>11</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Equalization</td>
<td>11</td>
</tr>
<tr>
<td>1.5.3</td>
<td>Error Control</td>
<td>13</td>
</tr>
<tr>
<td>1.5.4</td>
<td>Multicarrier Transmission</td>
<td>13</td>
</tr>
<tr>
<td>1.5.5</td>
<td>Orthogonal Frequency Division Multiplexing</td>
<td>14</td>
</tr>
<tr>
<td>1.5.6</td>
<td>Wideband Systems</td>
<td>15</td>
</tr>
<tr>
<td>1.6</td>
<td>Interference</td>
<td>15</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Cochannel Interference</td>
<td>16</td>
</tr>
<tr>
<td>1.6.2</td>
<td>Mitigation Techniques</td>
<td>17</td>
</tr>
<tr>
<td>1.7</td>
<td>Modulation</td>
<td>17</td>
</tr>
<tr>
<td>1.7.1</td>
<td>Linear versus Constant Envelope</td>
<td>17</td>
</tr>
<tr>
<td>1.7.2</td>
<td>Coherent versus Non-Coherent Detection</td>
<td>18</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>1.7.3 Multicarrier Modulation</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>1.8 Signal Duplexing Techniques</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>1.8.1 Spectrum Considerations</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>1.8.2 Radio Design Considerations</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>1.8.3 Implementation Considerations</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>1.9 Mobility and Handoff</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>1.9.1 Intracell versus Intercell Handoff</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>1.9.2 Mobile-Initiated versus Network-Initiated Handoff</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>1.9.3 Forward versus Backward Handoff</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>1.9.4 Hard versus Soft Handoff</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>1.10 Channel Assignment Strategies</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>1.11 Synchronization</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>1.12 Power Management</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>1.13 Spectrum Allocation</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Bibliography</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 2 Wireless Access Protocol Design

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Traffic Source Characterization</td>
<td>31</td>
</tr>
<tr>
<td>2.1.1 Periodic Traffic</td>
<td>31</td>
</tr>
<tr>
<td>2.1.2 Bursty Traffic</td>
<td>33</td>
</tr>
<tr>
<td>2.2 Characterizing Applications</td>
<td>34</td>
</tr>
<tr>
<td>2.2.1 Information Types</td>
<td>34</td>
</tr>
<tr>
<td>2.2.2 Delivery Requirements</td>
<td>34</td>
</tr>
<tr>
<td>2.2.3 Symmetry of Connection</td>
<td>35</td>
</tr>
<tr>
<td>2.2.4 Communication Requirements</td>
<td>35</td>
</tr>
<tr>
<td>2.2.5 Broadband Services</td>
<td>35</td>
</tr>
<tr>
<td>2.3 Resource Sharing</td>
<td>36</td>
</tr>
<tr>
<td>2.3.1 Resource Sharing Principles</td>
<td>36</td>
</tr>
<tr>
<td>2.3.2 The Global Queue</td>
<td>37</td>
</tr>
<tr>
<td>2.3.3 Measuring Resource Usage</td>
<td>38</td>
</tr>
<tr>
<td>2.3.4 Resource Sharing in Wideband Wireless Networks</td>
<td>38</td>
</tr>
<tr>
<td>2.3.5 Resource Reservation and Application Adaptation</td>
<td>39</td>
</tr>
<tr>
<td>2.3.6 Admission Control</td>
<td>39</td>
</tr>
<tr>
<td>2.4 Performance Analysis</td>
<td>40</td>
</tr>
<tr>
<td>2.5 Performance Evaluation</td>
<td>41</td>
</tr>
<tr>
<td>2.5.1 Efficiency</td>
<td>42</td>
</tr>
<tr>
<td>2.5.2 Throughput</td>
<td>42</td>
</tr>
</tbody>
</table>
2.5.3 Response Time 43
2.5.4 Fairness 43
2.6 Implementation Considerations 43
 2.6.1 Centralized versus Distributed Design 43
 2.6.2 Mobility versus Portability 44
 2.6.3 Integration with Higher Layer Functions 45
Summary 45
Bibliography 45

Chapter 3 Multiple Access Communications

3.1 Characterizing the Access Problem 49
 3.1.1 General Characteristics 50
 3.1.2 Classification 50
3.2 Framework for Discussion 52
 3.2.1 General Network Assumptions 53
 3.2.2 Collisions 53
 3.2.3 User Population 54
 3.2.4 Propagation Delay 55
 3.2.5 Channel Feedback 55
 3.2.6 Full and Limited Sensing 56
Summary 57
Bibliography 57

Chapter 4 Fixed Allocation Access Protocols

4.1 Frequency Division Multiple Access 61
 4.1.1 Disadvantages 62
 4.1.2 Implementation 62
4.2 Time Division Multiple Access 62
 4.2.1 Disadvantages 63
 4.2.2 Implementation 64
4.3 Comparison of FDMA and TDMA 64
4.4 Performance Evaluation 65
 4.4.1 Frequency Division Multiple Access 65
 4.4.2 Time Division Multiple Access 66
 4.4.3 Statistical Multiplexing 68
Chapter 5 Contention Protocols

5.1 General Characteristics 77
5.2 ALOHA Protocols 78
5.2.1 Unslotted ALOHA 78
5.2.2 Slotted ALOHA 79
5.2.3 Disciplined ALOHA 80
5.2.4 Spread ALOHA 81
5.3 Performance Analysis of ALOHA Protocols 81
5.3.1 Throughput Analysis 82
5.3.2 Average Number of Retransmissions 84
5.3.3 Acknowledgments 85
5.3.4 Power Capture 86
5.3.5 Analyzing the Slotted ALOHA Protocol with Capture 86
5.3.6 Controlled ALOHA 88
5.3.7 Asymmetric Traffic Load 88
5.3.8 Scheduling Retransmissions 90
5.3.9 Delay Analysis 93
5.4 Stability Problems in ALOHA Protocols 94
5.4.1 Stability Characterization 95
5.4.2 Dynamic Controls 96
5.5 Feedback Algorithms 96
5.5.1 The Binary Tree Algorithm 97
5.5.2 Analyzing the Tree Algorithm 97
5.5.3 Improving the Tree Algorithm 100
5.5.4 The Splitting Algorithm 101
5.5.5 Implementation Considerations 102
5.6 Carrier Sense Multiple Access
 5.6.1 CSMA Variations 103
 5.6.2 Performance Considerations 104
 5.6.3 Implementation Considerations 105
 5.6.4 CSMA with Collision Detection 106
 5.6.5 Virtual-Time CSMA 107
 5.6.6 Busy Tone Multiple Access 108

5.7 Adaptive Protocols 108
 5.7.1 The URN Protocol 108

5.8 Hybrid Access Protocols 109
 5.8.1 Split Reservation Upon Collision 110
 5.8.2 Mixed ALOHA Carrier Sense 110
 5.8.3 Random Access Polling 110

Summary 111
Bibliography 111

Chapter 6 Spread Spectrum Multiple Access

6.1 Spread Spectrum Communications 119
6.2 Wideband Versus Narrowband 121
 6.2.1 Code Division 121
 6.2.2 Time Capture 121
 6.2.3 Collisions in SSMA Systems 122
6.3 Direct Sequence Spread Spectrum 123
 6.3.1 Processing Gain 124
 6.3.2 Direct Sequence Code Division Multiple Access 124
 6.3.3 Power Control 127
 6.3.4 Synchronization 128
 6.3.5 RAKE Receiver 128
 6.3.6 Benefits of DSSS 129
6.4 Frequency Hopped Spread Spectrum 130
 6.4.1 Slow and Fast FH 130
 6.4.2 Benefits FHSS 131
6.5 Spreading Code Protocols 132
 6.5.1 Common Code 132
 6.5.2 Transmitter-Directed Codes 132
 6.5.3 Receiver-Directed Codes 132
 6.5.4 Single Code for Pairs of Users 133
Chapter 7 Reservation Protocols

7.1 General Characteristics 147
7.2 Centralized and Distributed 148
7.3 Reservation-ALOHA 148
 7.3.1 Implementation Considerations 149
 7.3.2 Performance Considerations 149
7.4 Packet Reservation Multiple Access 150
7.5 Dynamic Reservation 151
 7.5.1 Implementation Considerations 152
 7.5.2 Performance Considerations 152
7.6 Dynamic Reservation Multiple Access 153
7.7 Round-Robin Reservation Scheme 154
7.8 Split-Channel Reservation Multiple Access 154
7.9 Integrated Access Scheme 155
7.10 Demand Access Multiple Access 155
7.11 Priority-Oriented Demand Assignment 156
7.12 Announced Retransmission Random Access 157
7.13 Minislotted Protocols 157
7.14 Bit Map Access Protocol 158
7.15 Broadcast Recognition Access Method 158
7.16 Multilevel Multiple Access 159
Summary 159
Bibliography 160
Chapter 8 Broadband Wireless Access Protocols

8.1 The 2.4 GHz IEEE 802.11 Wireless LAN Standard 165
 8.1.1 The Distributed Coordination Function 166
 8.1.2 Virtual Sensing 168
 8.1.3 The Point Coordination Function 170
8.2 The 5 GHz IEEE 802.11 Wireless LAN Standard 171
8.3 The HIPERLAN Type 1 Wireless LAN Standard 172
 8.3.1 The EY-NPMA MAC Protocol 172
 8.3.2 Quality of Service 175
8.4 The HIPERLAN Type 2 Wireless LAN Standard 175
 8.4.1 HIPERLAN Type 2 MAC Protocol 176
 8.4.2 HiperLAN Type 2 Frame Format 177
 8.4.3 QoS support 178
8.5 Home Networks 179
 8.5.1 HomeRF’s Shared Wireless Access Protocol 179
 8.5.2 Bluetooth’s Access Mechanism 180
8.6 Wireless ATM 181
 8.6.1 Simple Asynchronous Multiple Access 181
 8.6.2 Distributed Queueing Request Update Multiple Access 182
 8.6.3 MASCARA 183
 8.6.4 WATMnet Access Protocol 184
 8.6.5 AWACS Access Protocol 185
8.7 Satellite ATM 187
 8.7.1 Multibeam Systems 187
 8.7.2 Multifrequency TDMA 188
8.8 Wireless Local Loop 189
 8.8.1 MMDS 189
 8.8.2 LMDS 190
 8.8.3 Access Methods in LMDS 190
8.9 IMT-2000 190
 8.9.1 Coverage Areas and Data Rates 191
 8.9.2 CDMA Proposals 191
 8.9.3 Wideband CDMA 192
 8.9.4 Time-Duplexed CDMA 193
 8.9.5 CDMA2000 193
 8.9.6 TDMA Proposals 194
Summary 195
Bibliography 195
Chapter 9 A Generalized Broadband Wireless Access Protocol

9.1 Protocol Description 199
9.2 Protocol Evaluation 203
9.3 Analysis of Randomized Slotted ALOHA 204
 9.3.1 Throughput Analysis 205
 9.3.2 Stability Analysis 206
9.4 Analysis of the Generalized Protocol 211
 9.4.1 Throughput Analysis 212
 9.4.2 Delay Analysis 214
9.5 Performance Comparison 221
9.6 Traffic Load Balancing 223
 9.6.1 Protocol Description 226
 9.6.2 Simulation Results 229
9.7 OPNET Simulation Models 232
9.8 OPNET Models for Generalized Protocol 233
 9.8.1 User Model for Base Station 233
 9.8.2 User Model for User with Periodic Traffic 234
 9.8.3 Process Model for Base Station 234
 9.8.4 Process Model for User with Periodic Traffic 236
9.9 OPNET Models for Traffic Load Balancing 238
 9.9.1 User Model for Base Station 239
 9.9.2 User Model for User with Periodic Traffic 239
 9.9.3 Process Model for Base Station 239
 9.9.4 Process Model for User with Periodic Traffic 239
9.10 Simulation Time 240
9.11 Formal Verification of Generalized Protocol 240
 9.11.1 Correctness 241
 9.11.2 Safety 241
 9.11.3 Liveness 242
Summary 243
Bibliography 244

Appendix Queuing Theory Primer

A.1 The Poisson Process 247
A.2 Little’s Theorem 248
A.3 The Single Server Queue 249
 A.3.1 M/G/1 Queue 250
A.3.2 M/M/1 Queue 251
A.3.3 M/D/1 Queue 251
A.4 Conservation Laws 252

Acronyms 253

About the Author 259

Index 261