Contents

1.	INTRODUCTION	1
2.	APPLICATIONS 2.1 Stackelberg games 2.2 Optimal chemical equilibria 2.3 Environmental economics 2.4 Discrimination between sets 2.5 Further applications	77 77 11 12 15 18
3.	LINEAR BILEVEL PROBLEMS 3.1 The model and one example 3.2 The geometric nature of linear bilevel programming 3.3 Existence of optimal solutions 3.4 Relations to other MP problems 3.5 Optimality conditions 3.6 Solution algorithms 3.7 Proofs	21 21 24 27 31 36 47 56
4.	PARAMETRIC OPTIMIZATION 4.1 Optimality conditions 4.2 Upper semicontinuity of the solution set mapping 4.3 Piecewise continuously differentiable functions 4.4 Properties of optimal solutions 4.5 Properties of the optimal value function 4.6 Proofs	61 62 64 70 75 88 91
5.	OPTIMALITY CONDITIONS 5.1 Optimality concepts 5.2 Optimality conditions based on strong stability 5.3 The contingent cone to the feasible set 5.4 Regularity	119 121 129 135 145

vi FOUNDATIONS OF BILEVEL PROGRAMMING

Index

	5.5 5.6 5.7 5.8	Optimality conditions using the KKT reformulation The approach via the lower level optimal value function Generalized PC^1 functions Proofs	149 155 158 172
6.	6.1 6.2	UTION ALGORITHMS A descent algorithm A bundle algorithm Penalty methods A trust region method Smoothing methods	193 194 200 209 211 215
7.	NON 7.1 7.2 7.3 7.4	NUNIQUE LOWER LEVEL SOLUTION Approximation of desired solutions Stability of bilevel problems Special perturbations Proofs	217 218 226 230 243
8.	DISC 8.1 8.2 8.3 8.4 8.5	CRETE BILEVEL PROBLEMS Two introductory examples Cutting plane algorithm Inner approximation Knapsack lower level problems Proofs	255 255 258 264 266 275
	REF	ERENCES	283
	Notations		303

305