Contents

Pro	eface			XV
9.			HICAL THEORY OF UNDULATIVE INDUCTION ATORS (EH-ACCELERATORS)	1
	1		CCELERATORS: GENERAL IDEAS	~
			PROPERTIES	2
		1.1	Principles of Operation of EH-Accelerators	2
		1.2	Comparison of Charged Particle Motions in Longitudinal Electric and Transverse	
			EH-Undulated Fields	5
		1.3	Example of the EH-Field Presentation	7
	2	EH-A	CCELERATOR AS A HIERARCHICAL	
		OSCII	LLATIVE SYSTEM	11
		2.1	Oscillations and Quasi-Resonances	11
		2.2	Hierarchy of Oscillations	17
	3	_	ON OF CHARGED PARTICLES IN THE STATIONARY LINEARLY POLARIZED	
		EH-A	CCELERATOR	21
		3.1	Analytical Solutions of the Problem of Particle	
			Motion	21
		3.2	Effect of Electron Reflection from the System	
			Input	24
		3.3	Effect of a Particle's Capture	27
	4	PICOS	SECOND ELECTRON BUNCH FORMERS	32
		4.1	Motion of an Electron Bunch in a Non-Stationary EH-System	32
		4.2	Example of the EH-Former for Picosecond Electron	
			Bunches	37

39
rly
39
45
MPACT 52
52
Natural 53
ARTICLE 59
inciples 59
60
61
67
70
70
larized 73
79
-Cooler 82
ΓRON 89
89
n 89
91
92
Lasers 104
FREE 107
107
m 114
115

Contents vii

11.		_	HICAL SINGLE-PARTICLE THEORY OF	
	FRE	EE ELE	CTRON LASERS	123
	1	_	ERAL APPROACH TO THE SINGLE-PARTICLE	
		THEO	RY OF FREE ELECTRON LASERS	124
		1.1	Method of Simulated Magneto-Dielectric	124
		1.2	Types of Modeling Pumping Fields	130
		1.3	Electron Motion in the Field of Electromagnetic Waves. Integrals of Motion	132
		1.4	Reducing Initial Equations to the Standard Form	136
		1.5	Classification of Models	138
		1.6	Case of a Weak Magnetic Field	139
	2		LE-PARTICLE THEORY OF THE FREE ELECTRO RS OF DOPPLERTRON TYPE	ON 142
		2.1	Obtaining the Equations of the First Hierarchical	142
		2.1	Level	142
		2.2	Passing to the H-Ubitron Model	144
		2.3	'Efficiency-Phase' Variables	145
		2.4	Model with the Optimal Electrostatic Support	146
		2.5	Model with the Optimal Variation of the Retardatio Factor	n 148
		2.6	Some Approximate Analytical Solutions	149
		2.7	Model with the Two-Frequency Pumping	150
	3	THE S	SINGLE-PARTICLE THEORY OF THE FREE	
			TRON LASER WITH EH-PUMPING	154
		3.1	Fields and Problem Formulation	154
		3.2	Resonant Conditions	155
		3.3	Truncated Equations in the Case of a Weak Magnetic Field	156
		3.4	Truncated Equations in the Case of a Coupled Parametric-Cyclotron Resonance	158
		3.5	Isochronous Models. The Case of a Super-Weak Magnetic Field	159
		3.6	Simplified Multi-Particle Theory of the EH Free Electron Laser	161

		CHICAL SELF-CONSISTENT THEORY OF ECTRON LASERS	169
1		ERAL FORMULATION OF THE PROBLEM	170
-	1.1	General Arrangement	170
	1.2	Fields and Resonances	170
	1.3	Electric Support	170
	1.4	Parametric Free Electron Laser as a Hierarchical	1/2
	1.1	Oscillative System	172
	1.5	Motion Problem	173
	1.6	Self-Consistent Problem	174
2	SIME	F-CONSISTENT TRUNCATED EQUATIONS. PLIFIED VERSION OF THE METHOD OF SLOWL YING AMPLITUDES	Y 175
	2.1	Statement of the Problem	176
	2.2	Initial Equations	176
	2.3	Truncated Equations in the Complex Form	177
	2.4	Truncated Equations in the Real Form	180
	2.5	Integrals of Motion	181
	2.6	Raman and Compton Modes	182
3	MET	F-CONSISTENT TRUNCATED EQUATIONS. HOD OF THE AVERAGED KINETIC EQUATION CUBIC DOPPLERTRON MODEL	. 183
	3.1	Statement of the Problem	183
	3.2	Transforming the Kinetic Equation into the Form with Total Derivatives	184
	3.3	Scalar Part of the Fields	184
	3.4	Current Density and Space Charge	185
	3.5	The Problem of Large Parameters	186
	3.6	Averaged Kinetic Equation	187
	3.7	Wave and Single-Particle Resonant Conditions	187
	3.8	Representation of the Distribution Function in the Form of a Fourier Series	188
	3.9	Truncated Equations for the Slowly Varying Amplitudes of Distribution Function	188
	3.10	Solving the Truncated Equation by Successive Approximations	190
	3.11	Back Transformation	192
	3.12	Maxwell's Equations	193
	3.13	Truncated Equations for the Wave Amplitudes	194
	3.14	Raman and Compton Interaction Modes	196

Contents ix

4	METH	CONSISTENT TRUNCATED EQUATIONS. THE IOD OF THE AVERAGED KINETIC EQUATION. CUBIC NONLINEAR H-UBITRON MODEL	107
	4.1	Formulation of the Problem	197
	4.1		197
		Three-Level Hierarchical Calculational Scheme	198
	4.3	Double-Averaged Kinetic Equation	200
	4.4	Solutions of the Double-Averaged Kinetic Equation	200
	4.5	Back Transformation on the First Hierarchical Level	201
	4.6	Truncated Equations for the Complex Wave Amplitudes	203
	4.7	Simplified Version of the Truncated Equations	204
5	THE M THE Q WITH	CONSISTENT TRUNCATED EQUATIONS. METHOD OF SLOWLY VARYING AMPLITUDES. QUADRATIC KINETIC DOPPLERTRON MODEL ARBITRARILY POLARIZATIONS OF THE	207
		TROMAGNETIC WAVES	205
	5.1	Formulation of the Problem	206
	5.2	Truncated Equations for the Wave Amplitudes	207
	5.3	Solving the Kinetic Equation by Successive Approximations	208
	5.4	Again the Truncated Equations for Wave Amplitudes	210
	5.5	Stationary Version of the Truncated Equations for Wave Amplitudes	212
	5.6	Integrals of Motion	213
6	THE S	CONSISTENT QUADRATIC FEL THEORY OF SIMPLEST LINEARLY POLARIZED	
	_	I-HYDRODYNAMICMODEL	214
	6.1	Truncated Equations for the Simplest Model	214
	6.2	Case of the Given Pumping Field	214
	6.3	Case of Self-Consistent Changing of All Slowly Varying Amplitudes. Integration Algorithm	216
	6.4	The Case of Self-Consistent Changing of All Slowly Varying Amplitudes. The Boundary Conditions Problem	219
	6.5	The Case of Self-Consistent Changing of All Slowly Varying Amplitudes. The Solutions	219
	6.6	The Case of Self-Consistent Changing of All Slowly Varying Amplitudes. The Passage to the	
		Approximation of a Given Pumping Field	220

7	ANAL	YSIS OF THE WAVE RESONANT CONDITIONS	221
	7.1	The Model of a Cold Electron Beam	221
	7.2	ADE Interaction Modes in the Dopplertron FEL	222
	7.3	Passing to the Case of the H-ubitron Model	224
	7.4	Dopplertron Models with Retarded Pumping	224
	7.5	Role of the Thermal Electron Beam Spread	226
8	SELF-	CONSISTENT QUADRATIC FEL THEORY OF	
		ARBITRARY POLARIZED KINETIC MODEL.	
		APPROXIMATION OF A GIVEN PUMPING FIELD	
		E CASE OF THE RAMAN MODE	227
	8.1	Types of Instabilities which Are Possible in	227
	0.2	the Dopplertron FELs	227
	8.2	Boundary Conditions	228
	8.3	Solutions	228
	8.4	Threshold of Interaction	229
	8.5	Passage to the H-Ubitron Model	230
	8.6	Phase Effects	230
	8.7	Polarization Effects	231
	8.8	The Effects of Phase and Polarization	233
	8.9	Discrimination The Pole of the Pumping Wove Peterdetion in the	233
	8.9	The Role of the Pumping Wave Retardation in the Amplification Process	237
9	SELF-	CONSISTENT QUADRATIC FEL THEORY OF	
		ARBITRARILY POLARIZED KINETIC MODEL.	
		APPROXIMATION OF THE GIVEN PUMPING	220
		O IN THE CASE OF COMPTON MODE	238
	9.1	Truncated Equations	238
	9.2	Boundary Conditions	239
	9.3	Solutions	239
	9.4	Phase and Polarization Effects	241
10		CONSISTENT QUADRATIC FEL THEORY.	
		EXPLOSIVE INSTABILITY IN THE LINEARLY	242
		RIZED RAMAN MODEL	242
	10.1	Classification of the Self-Consistent Modes of Interaction	243
	10.2	Truncated Equations. The Cold Linearly Polarized	47 3
	10.2	Dopplertron Model	244
	10.3	Classification of Models with Explosive Instability	245
	10.4	Analysis of the Synchronous Conditions	
		(Kinematic Analysis)	245
	10.5	Amplitude Analysis	246

Contents xi

	10.6	Case of Degeneration of the Wave Frequencies	248		
	10.7	The Influence of Dissipation for the SCW	250		
11	EXPL	-CONSISTENT QUADRATIC FEL THEORY. THE LOSIVE INSTABILITY IN THE ARBITRARILY ARIZED SELF-CONSISTENT RAMAN MODEL	251		
	11.1	Truncated Equations in the Real Form	251		
	11.2	Motion Integrals	252		
	11.3	Functions $u(z)$ and $R(z)$	252		
	11.4	Nonlinear Potential	253		
	11.5	Analytical Solutions	253		
	11.6	Explosive Length	256		
	11.7	Polarization Effects	256		
	11.8	Explosive Instability in the Linearly Polarized Self-Consistent Compton Model	259		
12	THE SELF-CONSISTENT QUADRATIC FEL THEORY. THE EXPLOSIVE INSTABILITY IN LINEARLY POLARIZED SELF-CONSISTENT COMPTON MODEL				
	12.1	The Compton Truncated Equations	260 261		
	12.2	Motion Integrals	262		
	12.3	Energy	262		
	12.4	Solutions	262		
	12.5	Compton Critical Length	263		
13	THE	C-CONSISTENT QUADRATIC FEL THEORY OF EFFECT OF THE GENERATION OF THE NSVERSE H-UBITRON FIELD	263		
	13.1	Two Modes of the Effect of the Generation of Additional Magnetic Field	264		
	13.2	Wave Nonlinear Mechanism	265		
	13.3	Diamagnetic Mechanism	266		
14	THE DOPPLERTRON CUBIC NONLINEAR MODEL. THE EFFECT OF NONLINEAR GENERATION OF THE LONGITUDINAL ELECTRIC FIELD				
	14.1	Physical Nature of the Generated Longitudinal Electric Field	269		
	14.2	Wave Efficiency	269		
	14.3	•	271		
	14.4	Numerical Analysis	271		

15	ISOC	PLERTRON CUBIC NONLINEAR MODEL. THE HRONOUS MODEL OF A DOPPLERTRON LIFIER	274
16	OF N	BITRON CUBIC NONLINEAR MODEL. THE EFFE CONLINEAR GENERATION OF THE TRANSVERS CODIC MAGNETIC FIELD	
	16.1	Adapted System of Truncated Equations and Its Accuracy	280
	16.2	Generation of the Additional Improper H-Ubitron Fields	281
	16.3	Nonlinear Generation of the Proper H-Ubitron Fields	285
		CHICAL THEORY OF TWO-STREAM CTERODYNE FREE ELECTRON LASERS	291
1		-STREAM SUPERHETERODYNE FREE ELECTR	ON
		ERS AS A NEW CLASS OF RELATIVISTIC CTRON DEVICES	292
	1.1	History of the Problem and the Main Ideas	292
	1.2	Two-Stream Superheterodyne Free Electron Laser (TSFEL): Design Schemas and Their Principles of	
		Operation	295
	1.3	Analyzed Models	298
2		ORY OF THE TWO-STREAM INSTABILITY	302
	2.1	Initial Model. Statement of the Problem	303
	2.2	The Linear Approximation	304
	2.3	Nonlinear Approximation	308
	2.4	Analysis	311
3		ESSENCE OF THE EFFECT OF TWO ERHETERODYNE AMPLIFICATION	314
	3.1	Qualitative Comparison of the Parametric and Superheterodyne Mechanisms of Amplification	314
	3.2	Main Idea of the Effect of Superheterodyne Amplification	315
4		MULATION OF THE CUBIC NONLINEAR STREAM SUPERHETERODYNE PROBLEM	317
	4.1	Model and Fields	317
	4.2	Two-Stream Superheterodyne Free Electron Laser as a Hierarchical Wave–Oscillative System	319
	4.3	Quasi-Compton and Raman Interaction Modes	321

Contents	Xiii
Comenia	*****

	4.4	Electric Support and the Effect of Nonlinear Generation of the Longitudinal Electric Field	323
	4.5	_	324
	4.6	Concept of the Space Charge Waves in the Cases of Raman and Compton Modes	325
5	CUBIC ANAL	C NONLINEAR TRUNCATED EQUATIONS AND YSIS	329
	5.1	Cubic Nonlinear Truncated Equations	329
	5.2	Amplification Dynamics	332
	5.3	Efficiency Dynamics	334
	5.4	Influence of the Effect of Nonlinear Generation of the Longitudinal Electric Field	335
	5.5	Influence of the Generated Magnetic Field	338
	5.6	Influence of Highest Harmonics and Longitudinal Focusing Magnetic Field	341
	5.7	Klystron TSFEL Amplifiers	344
EPILO	GUE		353
Append	lices		355
App	endix A		355
App	endix B		359
App	endix C		361
App	endix D		363
	endix E		365
App	endix F		367
Index			375