Contents

1	Int	roduction	1
	1.1	Previous research on the piezojunction effect	1
	1.2	Mechanical stress and its influence in accuracy	2
	1.3	New stress-sensing circuits	3
	1.4	Motivation and objectives	4
	1.5	Book structure	4
2	Me	chanical stress in integrated circuits	9
	2.1	Introduction	9
	2.2	Mechanical properties of crystalline silicon	9
	2.3	Mechanical stress	11
	2.4	Strain	12
	2.5	Silicon crystal orientation	14
	2.6	Elastic properties of silicon	15
	2.7	Origin of mechanical stress in a silicon die	17
	2.7	7.1 Wafer processing	17
	2.7	7.2 Packaging	18
	2.7	7.3 Gradients and geometrical factors	21
	2.7	7.4 Long-term instability and hysteresis	21
	2.8	Mechanical stress conditions to characterize microelectronic	
		circuits	22
	2.8	3.1 Cantilever technique	22

vi Contents

	2.8.	2 Test structure for mechanical stress and temperature	
		characterization	24
3	Piez	o effects in silicon	31
	3.1	Introduction	31
	3.2	An overview about the piezo effects in silicon	32
	3.3	Review of the piezoresistive theory of silicon	34
	3.3.	1 Piezoresistive tensor	35
	3.3.	2 Piezoresistive coefficients	37
	3.3.	3 Off-axis longitudinal and transversal piezoresistive	
		coefficients	38
	3.4	Piezojunction effect	39
	3.4	.1 Stress-induced change in the saturation current	39
	3.4.	2 Set of piezojunction coefficients for bipolar transistors	41
	3.4.	3 The influence of the piezojunction effect for	
		temperature-sensor voltages	42
4	Cha	racterization of the piezojunction effect	49
	4.1	Introduction	49
	4.2	Vertical transistors	49
	4.2.	1 DC characterization at wafer level	51
	4.2.	2 Vertical NPN characterization	53
	4.2.	3 Vertical PNP characterization	60
	4.2.	4 Piezojunction coefficients for vertical transistors	66
	4.2.	5 Temperature dependence of the piezojunction coefficients.	67
	4.2.	6 Piezojunction effect at different current densities	68
	4.3	Lateral transistors	69
	4.4	Summary of the piezoiunction coefficients	73

Contents vii

	4.5	Conclusions	74
5	\mathbf{N}	linimizing the piezojunction and piezoresistive	
	ef	fects in integrated devices	77
	5.1	Introduction	77
	5.2	Vertical transistors	78
	5.3	Lateral transistors	80
	5.4	Resistors	84
	5.5	Conclusions	88
6	M	inimizing the inaccuracy in packaged integrated circuits	91
	6.1	Introduction	91
	6.2	Translinear circuits	91
	6.3	Translinear circuits with resistors	93
	6.4	Bandgap references and temperature transducers	95
	6.4	Temperature transducer characterization	102
	6.4	1.2 Inaccuracy caused by packaging	106
	6.4	Bandgap reference characterization	109
	6.5	Conclusions	114
7	Str	ess-sensing elements based on the piezojunction effect	119
	7.1	Introduction	119
	7.2	Stress-sensing elements based on the piezoresistive effect	120
	7.3	Stress-sensing elements based on the piezojunction effect	121
	7.4	Comparison between the piezojunction effect and the	
		piezoresistive effect for stress-sensing applications	123
	7.5	Maximizing the piezojunction effect in L-PNP transistors	127
	7.6	Stress-sensing element based on the L-PNP current mirror	129

viii Contents

	7.6	1 Temperature dependence of the stress-sensitivity	133
	7.0	2 Compensation of the temperature effect	135
	7.0	3 Stress-sensing L-PNP transistor	137
	7.7	Conclusions	140
8	Con	clusions 1	43
	App	endix 1	147
	A	Transformation of coordinate system	147
	В	Stress calculations based on the cantilever technique	149
	C	Γransformation of coordinate system for the second-order	
		piezoresistive coefficients	151
	D	MatLab program used to calculate the stress-induced	
		change in V_{BE} and V_{ref}	153
	List	of symbols 1	.55
	Ind	x 1	59