TABLE OF CONTENTS

1	1171	RODUCTION	1
	1.1	Brief history	1
	1.2	Nature and major qualitative universal features of turbulent	
		flows	2
		1.2.1 Representative examples of turbulent flows	2
		1.2.2 In lieu of definition: major qualitative universal fea-	
		tures of turbulent flows	15
	1.3	Why turbulence is so impossibly difficult? The three N's	19
		1.3.1 On the Navier-Stokes equations	19
		1.3.2 On the nature of the problem	21
		1.3.3 Nonlinearity	22
		1.3.4 Noninegrability	22
		1.3.5 Nonlocality	23
		1.3.6 On physics of turbulence	24
		1.3.7 On statistical theories	24
	1.4	Outline of the following material	25
	1.5	In lieu of summary	26
2	OR	IGINS OF TURBULENCE	27
	2.1	Instability	27
	2.2	Transition to turbulence versus routes to chaos	29
	2.3	Many ways of creating turbulent flows	31
	2.4	Summary	32
3	ME	THODS OF DESCRIBING OF TURBULENT FLOWS	33
	3.1	Deterministic versus random/stochastic or how 'statistical'	
		is turbulence?	34
	3.2	On statistical theories, reduced (low dimensional) represent-	
		ations and related matters	37
	3.3	Turbulence versus deterministic chaos	40
	3.4	Statistical methods of looking at the data only? Or what	
		kind of statistics one needs?	41

	3.5	Decompositions/representations	43
	3.6	Summary	45
4	KIN	NEMATICS	47
	4.1	Passive objects in random fluid flows	47
		4.1.1 Geometrical statistics	53
	4.2	Kinematic/Lagrangian chaos/advection	56
	4.3	On the relation between Eulerian and Lagrangian fields	59
	4.4	On analogies and relations between passive and active fields	60
	4.5	Summary	62
5	PH	ENOMENOLOGY	65
_	5.1	Introductory notes	65
	5.2	Kolmogorov phenomenology and related subjects	66
	5.3	Cascade	73
	3.3	5.3.1 Introduction	74
		5.3.2 Is there cascade in physical space?	75
	5.4	What are the 'small scales' in turbulent flows?	77
	5.5	Cascade of passive objects?	80
	5.6	Summary	81
6	DY	NAMICS	83
	6.1	Introduction	83
	6.2	Why velocity derivatives?	85
	٠.ــ	6.2.1 Vortex stretching and enstrophy production	86
		6.2.2 Why strain too?	89
	6.3	Self-amplification of the field of velocity derivatives	92
	6.4	Geometrical statistics	98
	٠	6.4.1 Alignments	100
		6.4.2 The geometry of vortex stretching	101
	6.5	Depression of nonlinearity	113
	0.0	6.5.1 Relative depression of nonlinearity in regions with	110
		concentrated vorticity	114
		6.5.2 Are regions of concentrated vorticity quasionedimen-	
		sional?	115
	6.6	Nonlocality	118
	0.0	6.6.1 Introduction and simple examples	118
		6.6.2 Different aspects of nonlocality	121
	6.7	Acceleration and related matters	130
	0.7		100
	0.7	6.7.1 The relation between the total acceleration and its local and convective components	131

		6.7.2 The relation between the total acceleration and its	_
		irrotational and solenoidal components	
		6.7.3 Scale dependence	_
		6.7.4 Kinematical versus dynamical effects	
	6.8	Non-Gaussian nature of turbulence	
		6.8.1 Odd moments	-
		6.8.2 Quasi–Gaussian manifestations	13
		6.8.3 Irreversibility of turbulence	
	6.9	Summary	8
7	ST	RUCTURE(S) OF TURBULENT FLOWS 15	51
	7.1	Introduction	51
	7.2	Intermittency	52
		7.2.1 What is small scale intermittency?	53
		7.2.2 Measures/manifestations of intermittency 15	
		7.2.3 On possible origins of small scale intermittency 10	52
	7.3	What is(are) structure(s) of turbulent flows? 16	
		7.3.1 On the origins of structure(s) of/in turbulence 16	55
		7.3.2 How does the structure of turbulence 'look'? 16	8
		7.3.3 Structure versus statistics	0
		7.3.4 Examples of statistics weakly sensitive to structure(s) 17	13
		7.3.5 Structure sensitive statistics	4
	7.4	Which quantities possess structure in turbulence and how to	
		'dig' them out?	16
		7.4.1 Structure(s) versus scales and decompositions 17	18
	7.5	Summary	8
	TI	RBULENCE UNDER VARIOUS INFLUENCES AND	
		YSICAL CIRCUMSTANCES 18	31
	8.1	Introduction	31
	8.2	Shear flows	3
	8.3	Partly turbulent flows – entrainment)2
	8.4	Variable density	6
		8.4.1 Convection)6
		8.4.2 Stable stratification	19
		8.4.3 Compressible flows)3
	8.5	Rotation)3
		8.5.1 Helicity)6
	8.6	Negative eddy viscosity phenomena)6
		8.6.1 Laboratory experiments)7
		8.6.2 Examples from geophysics	0
		863 Possible explanations 2	1

	8.7	Magnetohydrodynamic flows	211
	8.8	Two-dimensional turbulence	214
		8.8.1 Pure two-dimensional versus quasi-two-dimensional .	216
		8.8.2 Some additional differences between two-dimensional	
		and three-dimensional turbulence	218
	8.9	Additives	220
9	COI	NCLUSION/CLOSE	227
	9.1	Universality	227
		9.1.1 On universal aspects of turbulence structure	228
		9.1.2 Reynolds number dependence	230
		9.1.3 Self-amplification of velocity derivatives	232
		9.1.4 Depression of nonlinearity	233
	9.2	Some mathematical and related aspects	233
	9.3	On the goals of basic research in turbulence	235
10	APP	PENDIX A. WHAT IS TURBULENCE?	237
11		ENDIX B. ABOUT THE 'SNAGS' OF THE PROB-	
	LEN	Λ	243
12	A DI	PENDIX C. GLOSSARY OF ESSENTIAL FLUID MEG	СП
14	ANI		247
		Kinematics	247
		Dynamics	248
	12,2	12.2.1 Basic equations and their consequences	248
		12.2.2 Some additional consequences from the NSE and	270
		invariant quantities	254
		12.2.3 Symmetries of Euler and Navier–Stokes equations	256
	12.3	Passive objects	257
	12.5	12.3.1 Passive scalars	257
		12.3.2 Passive vectors	257
	124	Some basic relations for the statistical description of turbu-	231
	12.7	lent flows	259
		12.4.1 Scaling, scales and related matters	260
		12.4.2 Reynolds averaged Navier–Stokes equations and related	
		12.4.3 Filter decomposition	
		12.4.4 Equations governing the dynamics of 'error'	
		12.7.7 Equations governing the dynamics of citor	207
13	A DE	PENDIX D. IT IS A MISCONCEPTION THAT	269

14	APPENDIX E. ON METHODS OF STUDING TURBU-		
	LENT FLOWS	271	
	14.1 Direct numerical simulations of the Navier-Stokes equations	271	
	14.2 Physical experiments	272	
15	APPENDIX F. GLOSSARY OF SOME TERMS	275	
15	BIBLIOGRAPHY	277	
16	AUTHOR INDEX	313	
17	SUBJECT INDEX	321	