## **Contents**

| Part I Nanocomposites: Structure and Properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| Chapter 1 Carbon Nanotube-Reinforced Polymers: a State of the Art Review  1 Introduction 2 General Problems in Nanocomposite Technology 3 Experimental 3.1 Manufacturing of Multiple-Wall Carbon Nanotubes 3.2 Treatment of Carbon Nanotubes 3.3 Matrix Polymers 3.4 Electron Microscopy 3.5 Dynamic-Mechanical Thermal Analysis 4 Results 4.1 Comparison of the Multiple-Wall Carbon Nanotubes Studied 4.2 Purification 4.3 CNT/Epoxy Composites: Dispersion, Matrix Bonding, and Functionalization 4.3.1 Dispersion 4.3.2 Nanotube-Matrix Interaction 4.3.3 Functionalization 4.4 Microscopy 4.4.1 Matrix Bonding to the Nanotubes 4.4.2 Crack Bridging and Telescopic Pull-Outs | 7<br>7<br>7<br>8<br>8 |
| 4.5 Thermal and Mechanical Properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                    |
| <ul><li>4.6 Electrical Properties</li><li>5 Conclusions</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18<br>21              |
| 6 Acknowledgements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21                    |
| 7 References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22                    |

vi Contents

| Chapter 2 | Application of Non-Layered Nanoparticles            |     |  |  |  |
|-----------|-----------------------------------------------------|-----|--|--|--|
|           | in Polymer Modification                             | 25  |  |  |  |
|           | 1 Introduction                                      | 25  |  |  |  |
|           | 2 Surface Treatment and Compounding                 | 27  |  |  |  |
|           | 2.1 Raw Materials                                   | 27  |  |  |  |
|           | 2.2 Pregrafting of the Nanoparticles by Irradiation | 27  |  |  |  |
|           | 2.3 Characterization of the Irradiation Products    | 28  |  |  |  |
|           | 2.4 Preparation of PP-Based Nanocomposites          |     |  |  |  |
|           | and Their Characterization                          | 28  |  |  |  |
|           | 2.5 Preparation of Epoxy-Based Nanocomposites       |     |  |  |  |
|           | and Their Characterization                          | 29  |  |  |  |
|           | 3 Thermoplastic Systems                             | 29  |  |  |  |
|           | 3.1 Effect of Irradiation Grafting Polymerization   |     |  |  |  |
|           | on the Nanoparticles                                | 29  |  |  |  |
|           | 3.2 Tensile Properties                              | 30  |  |  |  |
|           | 3.3 Fractography                                    | 35  |  |  |  |
|           | 4 Thermosetting Systems                             | 36  |  |  |  |
|           | 4.1 Interfacial Interactions in the Composites      | 36  |  |  |  |
|           | 4.2 Curing Behavior                                 | 38  |  |  |  |
|           | 4.3 Friction and Wear Performance                   | 38  |  |  |  |
|           | 5 Conclusions                                       | 42  |  |  |  |
|           | 6 Acknowledgements                                  | 43  |  |  |  |
|           | 7 References                                        | 43  |  |  |  |
| Chapter 3 | Reinforcement of Thermosetting Polymers by          |     |  |  |  |
|           | the Incorporation of Micro- and Nanoparticles       | 45  |  |  |  |
|           | 1 Introduction                                      | 45  |  |  |  |
|           | 2 Manufacturing of Thermosetting Nanocomposites     | 47  |  |  |  |
|           | 3 Properties of Nanocomposites                      | 50  |  |  |  |
|           | 3.1 Stress-Strain Behavior                          | 50  |  |  |  |
|           | 3.2 Impact Behavior                                 | 54  |  |  |  |
|           | 3.3 Stiffness-Impact Energy Relationship            | 55  |  |  |  |
|           | 3.4 Dynamic Mechanical Properties                   | 56  |  |  |  |
|           | 3.5 Wear Performance                                | 57  |  |  |  |
|           | 4 Acknowledgements                                  | 60  |  |  |  |
|           | 5 References                                        | 60  |  |  |  |
| Chapter 4 | Polyimides Reinforced by a Sol-Gel Derived          |     |  |  |  |
| -         | Organosilicon Nanophase: Synthesis                  |     |  |  |  |
|           | and Structure-Property Relationships                | 63  |  |  |  |
|           | 1 Nanocomposites Based on Flexible-Chain Polymers   | 63  |  |  |  |
|           | 2 Nanocomposites Based on Semi-Rigid Chain          | 0.5 |  |  |  |
|           | Polymers (Polyimides)                               | 66  |  |  |  |

Contents vii

|           | <ul> <li>2.1 In Situ Generation of an Organosilicon Nanophase</li> <li>2.2 Structural Characterization</li> <li>2.3 Water Uptake</li> <li>2.4 Thermomechanical Performance</li> <li>2.5 Dielectric Properties</li> <li>3 Conclusions</li> <li>4 Acknowledgements</li> <li>5 References</li> </ul>                                                                                                                                                         | 67<br>68<br>69<br>70<br>72<br>73<br>74             |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Chapter 5 | Layered Silicate/Rubber Nanocomposites  via Latex and Solution Intercalations  1 Concept of Nanoreinforcement  2 Production of Rubber/Clay Nanocomposites  2.1 Latex Intercalation  2.1.1 Nanocomposites from Rubber Latex  2.1.2 Nanocomposites from Latex Blends  2.1.3 Radiation-Vulcanized NR Latex  2.2 Solvent-Assisted Intercalation  3 Future Issues  4 Acknowledgements  5 References                                                            | 77<br>78<br>79<br>79<br>81<br>84<br>87<br>88<br>88 |
| Chapter 6 | Property Improvements of an Epoxy Resin by Nanosilica Particle Reinforcement  1 Introduction and State of the Art 2 Preparation and Characterization Techniques 2.1 Basic Material Components 2.2 Preparation of Nanosilica-Filled Epoxy Composites 2.3 Structural and Mechanical Analysis 2.3.1 Microstructure 2.3.2 Viscosity Studies of the Unfilled and Filled Resin 2.3.3 Mechanical Properties 2.3.4 Tribological Properties 2.3.5 Foilure Analysis | 91<br>94<br>94<br>95<br>95<br>95                   |
|           | 2.3.5 Failure Analysis  3 Microstructural and Rheological Details 3.1 Particle Distribution 3.2 Viscosity  4 Mechanical Properties 4.1 Three-Point Bending                                                                                                                                                                                                                                                                                                | 96<br>96<br>98<br>99<br>99                         |
|           | 4.2 Microhardness                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |

| viii | Contents |
|------|----------|
|      |          |

|         | 6<br>7 | Acknowledgements<br>References                                           | 104<br>104 |
|---------|--------|--------------------------------------------------------------------------|------------|
|         |        | ial Characterization Methods<br>Modeling                                 | 107        |
| Chapter |        | licro-Scratch Testing and Finite Element<br>imulation of Wear Mechanisms |            |
|         | of     | f Polymer Composites                                                     | 109        |
|         | 1      |                                                                          | 109        |
|         | 2      |                                                                          | 110        |
|         | 3      | <del>-</del>                                                             | 113        |
|         | 4      |                                                                          |            |
|         |        | Contact Analysis                                                         | 114        |
|         |        | 4.1 Finite Element Macro/Micro-Contact Models                            | 115        |
|         |        | 4.2 Normal Fiber Orientation                                             | 116        |
|         |        | 4.3 Parallel Fiber Orientation                                           | 118        |
|         |        | 4.4 Anti-Parallel Fiber Orientation                                      | 120        |
|         | 5      | Finite Element Simulation of the Fiber/Matrix Debo                       | nding 121  |
|         |        | 5.1 Debonding Model and Interface Elements                               | 122        |
|         |        | 5.1.1 Interface Elements                                                 | 122        |
|         |        | 5.1.2 Conditions of Debonding                                            | 123        |
|         |        | 5.1.3 Unloading Considerations                                           | 125        |
|         |        | 5.1.4 The Debonding Algorithm                                            | 125        |
|         |        | 5.2 Calculations for N-Oriented Carbon Fibers                            |            |
|         | _      | in a PEEK Matrix                                                         | 126        |
|         | 6      |                                                                          | 129        |
|         | 7      | 8                                                                        | 130        |
|         | 8      | References                                                               | 130        |
| Chapter |        | etermination of the Interface Strength                                   |            |
|         |        | Polymer-Polymer Joints by a Curved                                       |            |
|         |        | nterface Tensile Test                                                    | 133        |
|         | 1      | Introduction                                                             | 133        |
|         | 2      | Curved Interface Tensile Test                                            | 136        |
|         | 3      | Stress Calculation by Finite-Element Analysis                            | 137        |
|         |        | 3.1 Flat Interface                                                       | 138        |
|         | 4      | 3.2 Curved Interface                                                     | 138        |
|         | 4      | Experimental Observations                                                | 140        |
|         |        | 4.1 Materials and Specimen Preparation                                   | 140        |
|         |        | 4.2 Tensile Tests and Strain Estimation                                  | 142        |
|         | _      | 4.3 Determination of the Adhesion Strength                               | 144        |
|         | 5      | Conclusions and Outlook                                                  | 145        |
|         | 6      | References                                                               | 146        |

Contents ix

| Chapter 9   | Manufacturing and Characterization of Microfibrillar Reinforced Composites |     |
|-------------|----------------------------------------------------------------------------|-----|
|             | -                                                                          | 149 |
|             | 1 Introduction                                                             | 149 |
|             | 2 Materials, Processing, and Characterization Techniques                   | 151 |
|             | 3 Structure and Properties of MFCs                                         | 153 |
|             | 3.1 Structure and Properties of MFCs Based                                 |     |
|             | on PET/PP Blends                                                           | 153 |
|             | 3.1.1 Morphology                                                           | 153 |
|             | 3.1.2 Mechanical Properties of the Drawn Blends After Processing           | 157 |
|             | 3.2 Structure and Properties of MFCs Based                                 |     |
|             | on LCP/PPE Blends                                                          | 159 |
|             | 3.2.1 Morphology                                                           | 159 |
|             | 3.2.2 Mechanical Properties of Injection Molded                            |     |
|             | LCP/PPE Blends with MFC Structure                                          | 162 |
|             | 4 Conclusions                                                              | 164 |
|             | 5 Acknowledgements                                                         | 165 |
|             | 6 References                                                               | 165 |
| Chapter 10  | <b>Tribological Characteristics of Micro- and</b>                          |     |
|             |                                                                            | 169 |
|             | 1 Introduction                                                             | 169 |
|             | 2 Influence of Particle Size: from Micro- to Nanometer                     | 170 |
|             | 3 Influence of the Nanoparticle Volume Content                             | 171 |
|             | 4 Particle-Filled Polytetrafluoroethylene                                  | 174 |
|             | 5 Integration of Inorganic Particles                                       |     |
|             | With Traditional Fillers                                                   | 175 |
|             | 5.1 Inorganic Particles and Other Fillers                                  | 175 |
|             | 5.2 Combinative Effect of Nanoparticles                                    |     |
|             | and Short Carbon Fibers                                                    | 175 |
|             | 6 Conclusion                                                               | 182 |
|             | 7 Acknowledgement                                                          | 182 |
|             | 8 References                                                               | 182 |
| Part III Ma | acrocomposites: Processing and Application                                 | 187 |
| Chapter 11  | <b>Production of Thermoplastic Towpregs</b>                                |     |
| -           |                                                                            | 189 |
|             | 1 Introduction                                                             | 189 |
|             | 2 Raw Materials                                                            | 190 |
|             | 3 Production of Towpregs                                                   | 190 |
|             | 3.1 Process and Equipment Description                                      | 190 |

*x* Contents

|            |      | 3.2 Relationships Between Final Properties    |     |
|------------|------|-----------------------------------------------|-----|
|            |      | and Processing Conditions                     | 192 |
|            |      | 3.2.1 Parameters Affecting the Polymer Powder |     |
|            |      | Deposition                                    | 192 |
|            |      | 3.2.2 Influence of the Processing Conditions  |     |
|            |      | on the Final Composite Properties             | 193 |
|            | 4    | Production of Towpreg-Based Composites        | 194 |
|            |      | 4.1 Compression Molding                       | 194 |
|            |      | 4.1.1 Process Description                     | 194 |
|            |      | 4.1.2 Molding Conditions                      | 194 |
|            |      | 4.2 Process Modeling                          | 195 |
|            |      | 4.2.1 Isothermal Consolidation                | 196 |
|            |      | 4.2.2 Non-Isothermal Consolidation            | 197 |
|            |      | 4.2.3 Validation of the Consolidation Model   | 198 |
|            |      | 4.3 Pultrusion                                | 200 |
|            |      | 4.3.1 Process Description                     | 200 |
|            |      |                                               | 200 |
|            |      | 4.3.2 Processing Conditions                   |     |
|            |      | 4.3.3 Process Modeling                        | 201 |
|            |      | 4.4 Filament Winding                          | 203 |
|            |      | 4.4.1 Process Description                     | 203 |
|            |      | 4.4.2 Processing Conditions                   | 203 |
|            |      | 4.4.3 Relationships Between Final Properties  | 204 |
|            |      | and Processing Conditions                     | 204 |
|            |      | 4.5 Long Fiber-Reinforced Composite Stamping  | 206 |
|            |      | 4.5.1 Process Description                     | 206 |
|            | _    | 4.5.2 Processing Conditions                   | 206 |
|            | 5    | r                                             | 206 |
|            |      | 5.1 Mechanical Properties of Continuous       |     |
|            |      | Fiber-Reinforced Composites                   | 207 |
|            |      | 5.2 Mechanical Properties of Discontinuous    |     |
|            |      | Fiber-Reinforced Composites                   | 207 |
|            | 6    | Conclusions                                   | 211 |
|            | 7    | Acknowledgements                              | 211 |
|            | 8    | References                                    | 212 |
| CI 4 10    | 3. 4 |                                               |     |
| Chapter 12 |      | anufacturing of Tailored Reinforcement        |     |
|            | fo   | r Liquid Composite Molding Processes          | 215 |
|            | 1    | Introduction                                  | 215 |
|            | 2    | Pre-selection of Sewing Thread                | 217 |
|            |      | 2.1 Selection Criteria                        | 217 |
|            |      | 2.2 Polyester Thread in Global Preform Sewing | 219 |
|            | 3    | Tailored Reinforcements                       | 220 |
|            | 4    | Stitching Parameters and Their Influence      |     |
|            |      | on the Fiber-Reinforced Polymer Composites    | 221 |
|            |      | •                                             |     |

Contents xi

|            |    | 4.1 Machine Parameters                                 | 221        |
|------------|----|--------------------------------------------------------|------------|
|            |    | 4.1.1 Thread Tension                                   | 221        |
|            |    | 4.1.2 Presser Foot Pressure                            | 223        |
|            |    | 4.2 Stitching Pattern                                  | 224        |
|            | 5  | Quality Secured Preforming                             | 225        |
|            |    | 5.1 Macro Preform Quality                              | 225        |
|            |    | 5.2 Micro Preform Quality                              | 225        |
|            |    | 5.3 Fiber Disturbance at Seams                         | 226        |
|            | 6  | Liquid Composite Molding Process                       |            |
|            |    | for Net-Shape Preforms                                 | 227        |
|            |    | 6.1 Preform LCM Process Chain                          | 227        |
|            |    | 6.2 Thermal Behavior of Seam in FRPC                   | 228        |
|            |    | Quality Management                                     | 228        |
|            |    | Conclusions                                            | 231        |
|            |    | Acknowledgements                                       | 231        |
|            | 10 | References                                             | 231        |
| Chanter 13 | D  | econsolidation and Reconsolidation of                  |            |
| Chapter 13 |    |                                                        | 222        |
|            | 1  | nermoplastic Composites During Processing Introduction |            |
|            | _  | Experimental Observations                              | 233        |
|            | 2  | 2.1 Void Growth                                        | 235        |
|            |    | 2.2 Migration of Voids                                 | 235<br>236 |
|            |    | 2.3 Squeezed Flow of Resin During Reconsolidation      | 237        |
|            | 3  | Mechanistic Model of the Void Growth                   | 238        |
|            | 5  | 3.1 Discussion of the Mechanism                        | 238        |
|            |    | 3.2 Void-Growth Model                                  | 241        |
|            |    | 3.3 Theoretical Predictions                            | 244        |
|            | 4  | Thermal/Mechanistic Models of Migration of Voids       | 246        |
|            | •  | 4.1 Discussion of Mechanisms                           | 246        |
|            |    | 4.2 Thermal Analysis                                   | 246        |
|            |    | 4.3 Void Closure                                       | 249        |
|            |    | 4.4 Squeezed Creep Flow of Resin                       | 251        |
|            | 5  | Conclusions                                            | 253        |
|            | 6  | Acknowledgement                                        | 253        |
|            | 7  | References                                             | 253        |
|            |    |                                                        |            |
| Chapter 14 | Lo | ong Fiber-Reinforced Thermoplastic                     |            |
|            | Co | omposites in Automotive Applications                   | 255        |
|            | 1  | Introduction                                           | 255        |
|            | 2  | Long Glass Fiber-Reinforced Polypropylene              |            |
|            |    | with Mineral Fillers                                   | 257        |
|            | 3  | Long Fiber-Reinforced Polyamide 66 with Minimized      |            |
|            |    | Water Absorption                                       | 259        |

xii Contents

|            | 4   | Long Fiber-Reinforced Thermoplastic Styrene                     |            |
|------------|-----|-----------------------------------------------------------------|------------|
|            |     | Resins for Car Interior Applications                            | 259        |
|            | 5   | Conclusions                                                     | 261        |
|            | 6   | References                                                      | 261        |
| Part IV Me | ech | nanical Performance of Macrocomposites                          | 263        |
| Chapter 15 |     | eformation Mechanisms                                           |            |
|            | in  | Knitted Fabric Composites                                       | 265        |
|            | 1   | Introduction                                                    | 265        |
|            | 2   | Knitted Fabrics                                                 | 267        |
|            | 3   | Material Characterization and Deformation Behavior              | 268        |
|            |     | 3.1 Raw Materials                                               | 268        |
|            |     | 3.2 Material Characterization                                   | 268        |
|            |     | 3.2.1 Tensile Testing                                           | 268        |
|            |     | 3.2.2 V-Bending                                                 | 268        |
|            |     | 3.2.3 Dome Forming                                              | 269<br>269 |
|            | 1   | 3.2.4 Cup Forming Experimental Results and Grid Strain Analysis | 269        |
|            | _   | 4.1 Tensile Testing                                             | 269        |
|            |     | 4.2 V-bending                                                   | 270        |
|            |     | 4.3 Dome Forming                                                | 271        |
|            |     | 4.4 Cup Forming                                                 | 273        |
|            | 5   | Textile Composite Deformation Mechanisms                        | 274        |
|            |     | 5.1 Prepreg Flow Mechanisms                                     | 274        |
|            |     | 5.2 Macro-Level Fabric Deformation Modes                        | 274        |
|            |     | 5.3 Micro-Level Fabric Deformation Modes                        | 275        |
|            |     | 5.4 Textile Fabric Force-Displacement Curve                     | 276        |
|            |     | 5.5 Experimental Force-Displacement Curves                      | 278        |
|            | 6   | Modeling the Manufacture of the Reinforcement                   |            |
|            |     | Architecture                                                    | 278        |
|            |     | 6.1 Model Set-Up                                                | 279        |
|            |     | 6.2 Model Input: Knitting Machine Parameters                    | 280        |
|            |     | 6.3 Model Input: Material Property Parameters                   | 280        |
|            |     | 6.4 Model Input: Non-Physical Parameters                        | 282        |
|            |     | 6.5 Simulating the Mechanics of the Knitting Process            | 283        |
|            | 7   | Concluding Remarks                                              | 284        |
|            |     | Acknowledgements                                                | 286        |
|            | 9   | References                                                      | 286        |
| Chapter 16 |     | npact Damage in Composite Laminates                             | 289        |
|            | 1   | Introduction                                                    | 289        |
|            | 2   | Deformation and Energy Release Rate of Axisymmetric             |            |
|            |     | Plates with Multiple Delaminations                              | 291        |

Contents xiii

|            |    | 2.1 Axisymmetric Plate with Multiple Delaminations    | 201 |
|------------|----|-------------------------------------------------------|-----|
|            |    | of the Same Size                                      | 291 |
|            |    | 2.2 A Delamination is Larger or Smaller than the Rest | 293 |
|            |    | 2.3 Effect of geometrical nonlinearity                | 295 |
|            |    | 2.4 Finite Element Analysis                           | 296 |
|            | _  | 2.5 Some Derived Relationships                        | 297 |
|            | 3  | Effect of the Stacking Sequence                       | 300 |
|            | 4  | Simulation of Delamination Growth in Composite        | 204 |
|            | _  | Laminates                                             | 304 |
|            |    | Conclusion                                            | 305 |
|            | 6  | References                                            | 306 |
| Chapter 17 |    | iscontinuous Basalt Fiber-Reinforced                  |     |
|            | H  | ybrid Composites                                      | 309 |
|            | 1  | Introduction                                          | 309 |
|            | 2  | Basalt Fibers                                         | 310 |
|            |    | 2.1 Characteristics, Applications                     | 310 |
|            |    | 2.2 Production and Properties of Melt-Blown           |     |
|            |    | Basalt Fibers                                         | 313 |
|            | 3  | Hybrid Composites                                     | 314 |
|            |    | 3.1 Concept and Realization                           | 314 |
|            |    | 3.2 Property Prediction                               | 316 |
|            |    | 3.3 Applications                                      | 317 |
|            | 4  | Thermoplastic Hybrid Composites                       | 317 |
|            |    | 4.1 Polypropylene with Hybrid Reinforcement           |     |
|            |    | Containing Basalt Fibers                              | 317 |
|            |    | 4.2 Basalt Fiber-Reinforced Polymer Blends            | 319 |
|            | 5  | Thermoset Hybrid Composites                           | 321 |
|            |    | 5.1 Basalt Fiber Mat-Reinforced Hybrid Thermosets     | 321 |
|            |    | 5.2 Hybrid Fiber Mat-Reinforced Hybrid Thermosets     | 323 |
|            | 6  | Conclusions and Outlook                               | 324 |
|            | 7  | Acknowledgement                                       | 325 |
|            | 8  | References                                            | 325 |
| Chapter 18 | A  | ccelerated Testing Methodology                        |     |
|            | fo | r Polymer Composite Durability                        | 329 |
|            | 1  | Introduction                                          | 329 |
|            | 2  | Prediction Procedure of Fatigue Strength              | 330 |
|            | 3  | Some Experimental Details and Relationships Obtained  | 330 |
|            |    | 3.1 Experimental Procedure                            | 330 |
|            |    | 3.2 Failure Mechanism                                 | 331 |
|            |    | 3.3 Master Curve for the CSR Strength                 | 333 |
|            |    | 3.4 Master Curve for Creep Strength                   | 334 |

| xiv  | Contents |
|------|----------|
| ii v | Contents |

| 3.5 Master Curve for the Fatigue Strength |     |
|-------------------------------------------|-----|
| at Zero Stress Ratio                      | 335 |
| 3.6 Prediction of Fatigue Strength        |     |
| for Arbitrary Stress Ratios               | 337 |
| 4 Applicability of the Prediction Method  | 338 |
| 5 Conclusion                              | 339 |
| 6 References                              | 340 |
| <b>Contributing Authors</b>               | 343 |
| List of Acknowledgements                  | 357 |
| Author Index                              | 361 |
| Subject Index                             | 363 |