
16. Inflation-Indexed Swaps

Given a set of dates T1, . . . , TM , an Inflation-Indexed Swap (IIS) is a swap
where, on each payment date, Party A pays Party B the inflation rate over
a predefined period, while Party B pays Party A a fixed rate. The inflation
rate is calculated as the percentage return of the CPI index over the time
interval it applies to. Two are the main IIS traded in the market: the zero
coupon (ZC) swap and the year-on-year (YY) swap.

In a ZCIIS, at the final time TM , assuming TM = M years, Party B pays
Party A the fixed amount

N [(1 +K)M − 1], (16.1)

where K and N are, respectively, the contract fixed rate and nominal value.
In exchange for this fixed payment, Party A pays Party B, at the final time
TM , the floating amount

N

[
I(TM )
I0

− 1
]
. (16.2)

In a YYIIS, at each time Ti, Party B pays Party A the fixed amount

NϕiK,

where ϕi is the contract fixed-leg year fraction for the interval [Ti−1, Ti], while
Party A pays Party B the (floating) amount

Nψi

[
I(Ti)
I(Ti−1)

− 1
]
, (16.3)

where ψi is the floating-leg year fraction for the interval [Ti−1, Ti], T0 := 0
and N is again the contract nominal value.

Both ZC and YY swaps are quoted, in the market, in terms of the corre-
sponding fixed rate K. The ZCIIS and YYIIS (mid) fixed-rate quotes in the
Euro market on October 7th 2004 are shown in Figure 16.1, for maturities
up to twenty years. The reference CPI is the Euro-zone ex-tobacco index.

16.1 Pricing of a ZCIIS

Standard no-arbitrage pricing theory implies that the value at time t, 0 ≤
t < TM , of the inflation-indexed leg of the ZCIIS is
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Fig. 16.1. Euro inflation swap rates as of October 7, 2004.

ZCIIS(t, TM , I0, N) = NEn

{
e−

TM
t n(u) du

[
I(TM )
I0

− 1
] ∣∣Ft

}
, (16.4)

where Ft denotes the σ-algebra generated by the relevant underlying pro-
cesses up to time t.

By the foreign-currency analogy, the nominal price of a real zero-coupon
bond equals the nominal price of the contract paying off one unit of the CPI
index at bond maturity, see also the general formula (2.31). In formulas, for
each t < T :

I(t)Pr(t, T ) = I(t)Er

{
e−

T
t

r(u) du
∣∣Ft

}
= En

{
e−

T
t

n(u) duI(T )
∣∣Ft

}
.

(16.5)
Therefore, (16.4) becomes

ZCIIS(t, TM , I0, N) = N

[
I(t)
I0
Pr(t, TM ) − Pn(t, TM )

]
, (16.6)

which at time t = 0 simplifies to

ZCIIS(0, TM , N) = N [Pr(0, TM ) − Pn(0, TM )]. (16.7)

Formulas (16.6) and (16.7) yield model-independent prices, which are not
based on specific assumptions on the evolution of the interest rate market,
but simply follow from the absence of arbitrage. This result is extremely
important since it enables us to strip, with no ambiguity, real zero-coupon
bond prices from the quoted prices of zero-coupon inflation-indexed swaps.

In fact, the market quotes values ofK = K(TM ) for some given maturities
TM , so that equating (16.7) with the (nominal) present value of (16.1), and
getting the discount factor Pn(0, TM ) from the current (nominal) zero-coupon
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curve, we can solve for the unknown Pr(0, TM ). We thus obtain the discount
factor for maturity TM in the real economy:1

Pr(0, TM ) = Pn(0, TM )(1 +K(TM ))M . (16.8)

Remark 16.1.1. (ZCIIS and Forward CPI). Kazziha (1999) defines the
T -forward CPI at time t as the fixed amount X to be exchanged at time T
for the CPI I(T ), for which such a swap has zero value at time t, in analogy
with the definition of a forward LIBOR rate we gave in Chapter 1. From
formula (16.5), we immediately obtain

I(t)Pr(t, T ) = XPn(t, T ).

This is consistent with definition (15.1), which was directly based on the
foreign-currency analogy.

The advantage of Kazziha’s approach is that no foreign-currency analogy
is required for the definition of the forward CPI’s Ii, and the pricing system
she defines is only based on nominal zero-coupon bonds and forward CPI’s.
In her setting, the value at time zero of a TM -forward CPI can be obtained
from the market quote K(TM ) by applying this simple formula

IM (0) = I(0)(1 +K(TM ))M ,

which is perfectly equivalent to (16.8).

16.2 Pricing of a YYIIS

Compared to that of a ZCIIS, the valuation of a YYIIS is more involved.
Notice, in fact, that the value at time t < Ti of the payoff (16.3) at time Ti is

YYIIS(t, Ti−1, Ti, ψi, N) = NψiEn

{
e−

Ti
t n(u) du

[
I(Ti)
I(Ti−1)

− 1
] ∣∣Ft

}
,

(16.9)
which, assuming t < Ti−1 (otherwise we fall back to the previous case), can
be calculated as

NψiEn

{
e−

Ti−1
t n(u) duEn

[
e
− Ti

Ti−1
n(u) du

(
I(Ti)
I(Ti−1)

− 1
) ∣∣FTi−1

] ∣∣Ft

}
.

(16.10)
The inner expectation is nothing but ZCIIS(Ti−1, Ti, I(Ti−1), 1), so that we
obtain

NψiEn

{
e−

Ti−1
t n(u) du[Pr(Ti−1, Ti) − Pn(Ti−1, Ti)]

∣∣Ft

}
= NψiEn

{
e−

Ti−1
t n(u) duPr(Ti−1, Ti)

∣∣Ft

}
−NψiPn(t, Ti).

(16.11)

1 The real discount factors for intermediate maturities can be inferred by taking
into account the typical seasonality effects in inflation.
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The last expectation can be viewed as the nominal price of a derivative paying
off, in nominal units, the real zero-coupon bond price Pr(Ti−1, Ti) at time
Ti−1. If real rates were deterministic, then this price would simply be the
present value, in nominal terms, of the forward price of the real bond. In this
case, in fact, we would have:

En

{
e−

Ti−1
t n(u) duPr(Ti−1, Ti)

∣∣Ft

}
= Pr(Ti−1, Ti)Pn(t, Ti−1)

=
Pr(t, Ti)
Pr(t, Ti−1)

Pn(t, Ti−1).

In practice, however, real rates are stochastic and the expected value in
(16.11) is model dependent. For instance, under dynamics (15.2), the forward
price of the real bond must be corrected by a factor depending on both the
nominal and real interest rates volatilities and on the respective correlation.
This is explained in the following.

16.3 Pricing of a YYIIS with the JY Model

Denoting by QT
n the nominal T -forward measure for a general maturity T

and by ET
n the associated expectation, we can write:

YYIIS(t, Ti−1, Ti, ψi, N)

= NψiPn(t, Ti−1)ETi−1
n

{
Pr(Ti−1, Ti)

∣∣Ft

}
−NψiPn(t, Ti).

(16.12)

Remembering formula (3.39) for the zero-coupon bond price in the Hull and
White (1994b) model:

Pr(t, T ) = Ar(t, T )e−Br(t,T )r(t),

Br(t, T ) =
1
ar

[
1 − e−ar(T−t)

]
,

Ar(t, T ) =
PM

r (0, T )
PM

r (0, t)
exp

{
Br(t, T )fM

r (0, t) − σ2
r

4ar
(1 − e−2art)Br(t, T )2

}
,

(16.13)

and noting that, by the change-of-numeraire toolkit in Section 2.3, and for-
mula (2.12) in particular, the real instantaneous rate evolves under QTi−1

n

according to

dr(t) = [−ρn,rσnσrBn(t, Ti−1) + ϑr(t) − ρr,IσIσr − arr(t)] dt+ σr dW
Ti−1
r (t)
(16.14)

with W
Ti−1
r a QTi−1

n -Brownian motion, we have that the real bond price
Pr(Ti−1, Ti) is lognormally distributed under QTi−1

n , since r(Ti−1) is still a
normal random variable under this (nominal) forward measure. After some
tedious, but straightforward, algebra we finally obtain
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YYIIS(t, Ti−1, Ti, ψi, N)

= NψiPn(t, Ti−1)
Pr(t, Ti)
Pr(t, Ti−1)

eC(t,Ti−1,Ti) −NψiPn(t, Ti),
(16.15)

where

C(t, Ti−1, Ti) =σrBr(Ti−1, Ti)
[
Br(t, Ti−1)

(
ρr,IσI − 1

2σrBr(t, Ti−1)

+
ρn,rσn

an + ar

(
1 + arBn(t, Ti−1)

))
− ρn,rσn

an + ar
Bn(t, Ti−1)

]
.

The expectation of a real zero-coupon bond price under a nominal forward
measure, in the JY model, is thus equal to the current forward price of the
real bond multiplied by a correction factor, which depends on the (instan-
taneous) volatilities of the nominal rate, the real rate and the CPI, on the
(instantaneous) correlation between nominal and real rates, and on the (in-
stantaneous) correlation between the real rate and the CPI.

The exponential of C is the correction term we mentioned above. This
term accounts for the stochasticity of real rates and, indeed, vanishes for
σr = 0.

The value at time t of the inflation-indexed leg of the swap is simply
obtained by summing up the values of all floating payments. We thus get

YYIIS(t, T , Ψ,N) = Nψι(t)

[
I(t)

I(Tι(t)−1)
Pr(t, Tι(t)) − Pn(t, Tι(t))

]

+N
M∑

i=ι(t)+1

ψi

[
Pn(t, Ti−1)

Pr(t, Ti)
Pr(t, Ti−1)

eC(t,Ti−1,Ti) − Pn(t, Ti)
]
,

(16.16)

where we set T := {T1, . . . , TM}, Ψ := {ψ1, . . . , ψM} and ι(t) = min{i : Ti >
t},2 and where the first payment after time t has been priced according to
(16.6). In particular at t = 0,

YYIIS(0, T , Ψ,N) = Nψ1[Pr(0, T1) − Pn(0, T1)]

+N
M∑
i=2

ψi

[
Pn(0, Ti−1)

Pr(0, Ti)
Pr(0, Ti−1)

eC(0,Ti−1,Ti) − Pn(0, Ti)
]

= N

M∑
i=1

ψiPn(0, Ti)
[
1 + τiFn(0;Ti−1, Ti)
1 + τiFr(0;Ti−1, Ti)

eC(0,Ti−1,Ti) − 1
]
.

(16.17)

The advantage of using Gaussian models for nominal and real rates is clear as
far as analytical tractability is concerned. However, the possibility of negative
rates and the difficulty in estimating historically the real rate parameters led
to alternative approaches. We now illustrate two different market models that
have been proposed for alternative valuations of a YYIIS and other inflation-
indexed derivatives.
2 By definition, Tι(t)−1 ≤ t < Tι(t).



654 16. Inflation-Indexed Swaps

16.4 Pricing of a YYIIS with a First Market Model

For an alternative pricing of the above YYIIS, we notice that we can change
measure and, as explained in Section 2.8, re-write the expectation in (16.12)
as

Pn(t, Ti−1)ETi−1
n

{
Pr(Ti−1, Ti)

∣∣Ft

}
= Pn(t, Ti)ETi

n

{
Pr(Ti−1, Ti)
Pn(Ti−1, Ti)

∣∣Ft

}
= Pn(t, Ti)ETi

n

{
1 + τiFn(Ti−1;Ti−1, Ti)
1 + τiFr(Ti−1;Ti−1, Ti)

∣∣Ft

}
,

(16.18)

which can be calculated as soon as we specify the distribution of both forward
rates under the nominal Ti-forward measure.

It seems natural, therefore, to resort to a LFM, which postulates the
evolution of simply-compounded forward rates, namely the variables that
explicitly enter the last expectation, see Section 6.3. This approach, followed
by Mercurio (2005), is detailed in the following.

Since I(t)Pr(t, Ti) is the price of an asset in the nominal economy, we
have that the forward CPI

Ii(t) = I(t)
Pr(t, Ti)
Pn(t, Ti)

is a martingale under QTi
n by the definition itself of QTi

n . Assuming lognormal
dynamics for Ii,

dIi(t) = σI,iIi(t) dW I
i (t), (16.19)

where σI,i is a positive constant and W I
i is a QTi

n -Brownian motion, and
assuming also that both nominal and real forward rates follow a LFM, the
analogy with cross-currency derivatives pricing implies that the dynamics of
Fn(·;Ti−1, Ti) and Fr(·;Ti−1, Ti) under QTi

n are given by (see Section 14.4)

dFn(t;Ti−1, Ti) = σn,iFn(t;Ti−1, Ti) dWn
i (t),

dFr(t;Ti−1, Ti) = Fr(t;Ti−1, Ti)
[
− ρI,r,iσI,iσr,i dt+ σr,i dW

r
i (t)

]
,

(16.20)

where σn,i and σr,i are positive constants, Wn
i and W r

i are two Brownian
motions with instantaneous correlation ρi, and ρI,r,i is the instantaneous
correlation between Ii(·) and Fr(·;Ti−1, Ti), i.e. dW I

i (t) dW r
i (t) = ρI,r,i dt.

Allowing σI,i, σn,i and σr,i to be deterministic functions of time does not
complicate the calculations below. We assume hereafter that such volatilities
are constant for ease of notation only. In practice, however, the implications
of using constant or time-dependent coefficients should be carefully analyzed.
See also Chapter 7 and Remark 18.0.1 below.

The expectation in (16.18) can then be easily calculated with a numerical
integration by noting that, under QTi

n and conditional on Ft, the pair3

3 To lighten the notation, we simply write (Xi, Yi) instead of (Xi(t), Yi(t)).
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(Xi, Yi) =
(

ln
Fn(Ti−1;Ti−1, Ti)
Fn(t;Ti−1, Ti)

, ln
Fr(Ti−1;Ti−1, Ti)
Fr(t;Ti−1, Ti)

)
(16.21)

is distributed as a bivariate normal random variable with mean vector and
variance-covariance matrix, respectively, given by

MXi,Yi =
[
μx,i(t)
μy,i(t)

]
, VXi,Yi =

[
σ2

x,i(t) ρiσx,i(t)σy,i(t)
ρiσx,i(t)σy,i(t) σ2

y,i(t)

]
, (16.22)

where

μx,i(t) = − 1
2σ

2
n,i(Ti−1 − t), σx,i(t) = σn,i

√
Ti−1 − t,

μy,i(t) =
[
− 1

2σ
2
r,i − ρI,r,iσI,iσr,i

]
(Ti−1 − t), σy,i(t) = σr,i

√
Ti−1 − t.

It is well known that the density fXi,Yi(x, y) of (Xi, Yi) can be decomposed
as4

fXi,Yi
(x, y) = fXi|Yi

(x, y)fYi
(y),

where

fXi|Yi
(x, y) =

1
σx,i(t)

√
2π

√
1 − ρ2i

exp

⎡⎢⎣−
(

x−μx,i(t)
σx,i(t)

− ρi
y−μy,i(t)

σy,i(t)

)2

2(1 − ρ2i )

⎤⎥⎦
fYi(y) =

1
σy,i(t)

√
2π

exp

[
−1

2

(
y − μy,i(t)
σy,i(t)

)2
]
.

(16.23)

The last expectation in (16.18) can thus be calculated as∫ +∞

−∞

∫ +∞
−∞ (1 + τiFn(t;Ti−1, Ti)ex) fXi|Yi

(x, y) dx
1 + τiFr(t;Ti−1, Ti) ey

fYi
(y) dy

=
∫ +∞

−∞

1 + τiFn(t;Ti−1, Ti) e
μx,i(t)+ρiσx,i(t)

y−μy,i(t)
σy,i(t) +

1
2σ2

x,i(t)(1−ρ2
i )

1 + τiFr(t;Ti−1, Ti) ey
fYi

(y) dy

=
∫ +∞

−∞

1 + τiFn(t;Ti−1, Ti) eρiσx,i(t)z− 1
2σ2

x,i(t)ρ
2
i

1 + τiFr(t;Ti−1, Ti) eμy,i(t)+σy,i(t)z

1√
2π
e−

1
2 z2

dz,

yielding:

YYIIS(t, Ti−1, Ti, ψi, N)

= NψiPn(t, Ti)
∫ +∞

−∞

1 + τiFn(t;Ti−1, Ti) eρiσx,i(t)z− 1
2σ2

x,i(t)ρ
2
i

1 + τiFr(t;Ti−1, Ti) eμy,i(t)+σy,i(t)z

1√
2π
e−

1
2 z2

dz

−NψiPn(t, Ti).
(16.24)

4 See also Appendix E for a similar calculation.



656 16. Inflation-Indexed Swaps

To value the whole inflation-indexed leg of the swap some care is needed, since
we cannot simply sum up the values (16.24) of the single floating payments. In
fact, as noted by Schlögl (2002) in a multi-currency version of the LFM,5 we
cannot assume that the volatilities σI,i, σn,i and σr,i are positive constants for
all i, because there exists a precise relation between two consecutive forward
CPIs and the corresponding nominal and real forward rates, namely:

Ii(t)
Ii−1(t)

=
1 + τiFn(t;Ti−1, Ti)
1 + τiFr(t;Ti−1, Ti)

. (16.25)

Clearly, if we assume that σI,i, σn,i and σr,i are positive constants, σI,i−1

cannot be constant as well, and its admissible values are obtained by equating
the (instantaneous) quadratic variations on both sides of (16.25).

However, by freezing the forward rates at their time 0 value in the diffusion
coefficients of the right-hand-side of (16.25), we can still get forward CPI
volatilities that are approximately constant. For instance, in the one-factor
model case,

σI,i−1 = σI,i + σr,i
τiFr(t;Ti−1, Ti)

1 + τiFr(t;Ti−1, Ti)
− σn,i

τiFn(t;Ti−1, Ti)
1 + τiFn(t;Ti−1, Ti)

≈ σI,i + σr,i
τiFr(0;Ti−1, Ti)

1 + τiFr(0;Ti−1, Ti)
− σn,i

τiFn(0;Ti−1, Ti)
1 + τiFn(0;Ti−1, Ti)

.

Therefore, applying this “freezing” procedure for each i < M starting from
σI,M , or equivalently for each i > 2 starting from σI,1, we can still assume
that the volatilities σI,i are all constant and set to one of their admissible
values. The value at time t of the inflation-indexed leg of the swap is thus
given by

YYIIS(t, T , Ψ,N) = Nψι(t)

[
I(t)

I(Tι(t)−1)
Pr(t, Tι(t)) − Pn(t, Tι(t))

]

+N
M∑

i=ι(t)+1

ψiPn(t, Ti)

·
[ ∫ +∞

−∞

1 + τiFn(t;Ti−1, Ti) eρiσx,i(t)z− 1
2σ2

x,i(t)ρ
2
i

1 + τiFr(t;Ti−1, Ti) eμy,i(t)+σy,i(t)z

1√
2π
e−

1
2 z2

dz − 1
]
.

(16.26)

In particular at t = 0,
5 See also Section 14.5.4.
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YYIIS(0, T , Ψ,N) = Nψ1[Pr(0, T1) − Pn(0, T1)] +N
M∑
i=2

ψiPn(0, Ti)

·
[ ∫ +∞

−∞

1 + τiFn(0;Ti−1, Ti) eρiσx,i(0)z− 1
2σ2

x,i(0)ρ
2
i

1 + τiFr(0;Ti−1, Ti) eμy,i(0)+σy,i(0)z

1√
2π
e−

1
2 z2

dz − 1
]

= N
M∑
i=1

ψiPn(0, Ti)

·
[ ∫ +∞

−∞

1 + τiFn(0;Ti−1, Ti) eρiσx,i(0)z− 1
2σ2

x,i(0)ρ
2
i

1 + τiFr(0;Ti−1, Ti) eμy,i(0)+σy,i(0)z

1√
2π
e−

1
2 z2

dz − 1
]
.

(16.27)

This YYIIS price depends on the following parameters: the (instantaneous)
volatilities of nominal and real forward rates and their correlations, for each
payment time Ti, i = 2, . . . ,M ; the (instantaneous) volatilities of forward
inflation indices and their correlations with real forward rates, again for each
i = 2, . . . ,M .

Compared with expression (16.17), formula (16.27) looks more compli-
cated both in terms of input parameters and in terms of the calculations
involved. However, one-dimensional numerical integrations are not so cum-
bersome and time consuming. Moreover, as is typical in a market model, the
input parameters can be determined more easily than those coming from the
previous short-rate approach. In this respect, formula (16.27) is preferable to
(16.17).

As in the JY case, valuing a YYIIS with a LFM has the drawback that the
volatility of real rates may be hard to estimate, especially when resorting to
a historical calibration. This is why, in the literature, a second market model
has been proposed, which enables us to overcome this estimation issue. In the
following section we will review this approach, which has been independently
developed by Kazziha (1999), Belgrade, Benhamou and Koehler (2004) and
Mercurio (2005).

16.5 Pricing of a YYIIS with a Second Market Model

Applying the definition of forward CPI and using the fact that Ii is a mar-
tingale under QTi

n , we can also write, for t < Ti−1,

YYIIS(t, Ti−1, Ti, ψi, N) = NψiP (t, Ti)ETi
n

{
I(Ti)
I(Ti−1)

− 1
∣∣Ft

}
= NψiP (t, Ti)ETi

n

{
Ii(Ti)

Ii−1(Ti−1)
− 1

∣∣Ft

}
= NψiP (t, Ti)ETi

n

{
Ii(Ti−1)

Ii−1(Ti−1)
− 1

∣∣Ft

}
.

(16.28)
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The dynamics of Ii under QTi
n is given by (16.19) and an analogous evolution

holds for Ii−1 under QTi−1
n . The dynamics of Ii−1 under QTi

n can be derived
by applying the change-of-numeraire toolkit in Section 2.3. We get:

dIi−1(t) = Ii−1(t)σI,i−1

[
− τiσn,iFn(t;Ti−1, Ti)

1 + τiFn(t;Ti−1, Ti)
ρI,n,i dt+ dW I

i−1(t)
]
,

(16.29)
where σI,i−1 is a positive constant, W I

i−1 is a QTi
n -Brownian motion with

dW I
i−1(t) dW

I
i (t) = ρI,i dt, and ρI,n,i is the instantaneous correlation between

Ii−1(·) and Fn(·;Ti−1, Ti).
The evolution of Ii−1, under QTi

n , depends on the nominal forward rate
Fn(·;Ti−1, Ti), so that the calculation of (16.28) is rather involved in general.
To avoid unpleasant complications, like those induced by higher-dimensional
integrations, we freeze the drift in (16.29) at its current time-t value, so that
Ii−1(Ti−1) conditional on Ft is lognormally distributed also under QTi

n . This
leads to

ETi
n

{
Ii(Ti−1)

Ii−1(Ti−1)

∣∣Ft

}
=

Ii(t)
Ii−1(t)

eDi(t),

where

Di(t) = σI,i−1

[
τiσn,iFn(t;Ti−1, Ti)
1 + τiFn(t;Ti−1, Ti)

ρI,n,i − ρI,iσI,i + σI,i−1

]
(Ti−1 − t),

so that

YYIIS(t, Ti−1, Ti, ψi, N) = NψiPn(t, Ti)
[

Ii(t)
Ii−1(t)

eDi(t) − 1
]

= NψiPn(t, Ti)
[
Pn(t, Ti−1)Pr(t, Ti)
Pn(t, Ti)Pr(t, Ti−1)

eDi(t) − 1
]
.

(16.30)

Finally, the value at time t of the inflation-indexed leg of the swap is

YYIIS(t, T , Ψ,N) = Nψι(t)Pn(t, Tι(t)

[ Iι(t)(t)
I(Tι(t)−1)

− 1
]

+N
M∑

i=ι(t)+1

ψiPn(t, Ti)
[

Ii(t)
Ii−1(t)

eDi(t) − 1
]

= Nψι(t)

[
I(t)

I(Tι(t)−1)
Pr(t, Tι(t)) − Pn(t, Tι(t))

]

+N
M∑

i=ι(t)+1

ψi

[
Pn(t, Ti−1)

Pr(t, Ti)
Pr(t, Ti−1)

eDi(t) − Pn(t, Ti)
]
.

(16.31)

In particular at t = 0,
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YYIIS(0, T , Ψ,N) = N
M∑
i=1

ψiPn(0, Ti)
[

Ii(0)
Ii−1(0)

eDi(0) − 1
]

= Nψ1[Pr(0, T1) − Pn(0, T1)]

+N
M∑
i=2

ψi

[
Pn(0, Ti−1)

Pr(0, Ti)
Pr(0, Ti−1)

eDi(0) − Pn(0, Ti)
]

= N

M∑
i=1

ψiPn(0, Ti)
[
1 + τiFn(0;Ti−1, Ti)
1 + τiFr(0;Ti−1, Ti)

eDi(0) − 1
]
.

(16.32)

This YYIIS price depends on the following parameters: the (instantaneous)
volatilities of forward inflation indices and their correlations; the (instanta-
neous) volatilities of nominal forward rates; the instantaneous correlations
between forward inflation indices and nominal forward rates.

Expression (16.32) looks pretty similar to (16.17) and may be preferred to
(16.27) since it combines the advantage of a fully-analytical formula with that
of a market-model approach. Moreover, contrary to (16.27), the correction
term D does not depend on the volatility of real rates.

A drawback of formula (16.32) is that the approximation it is based on
may be rough for long maturities Ti. In fact, such a formula is exact when the
correlations ρI,n,i are set to zero and the terms Di are simplified accordingly.
In general, however, such correlations can have a non-negligible impact on the
Di, and non-zero values can be found when calibrating the model to YYIIS
market data.

To visualize the magnitude of the correction terms Di in the pricing for-
mula (16.32), we plot in Figure 16.2 the values of Di(0) corresponding to
setting Ti = i years, i = 2, 3, . . . , 20, σI,i = 0.006, σn,i = 0.22, ρI,n,i = 0.2,
ρI,i = 0.6, for each i, and where the forward rates Fn(0;Ti−1, Ti) are stripped
from the Euro nominal zero-coupon curve as of 7 October 2004.
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Fig. 16.2. Plot of values Di(0), in percentage points, for i = 2, 3, . . . , 20.
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