

Chauffage et petite cogénération

Le principe ? Combiner la production d'électricité avec la production de chaleur pour limiter les pertes énergiques de manière significative!

Ainsi, la cogénération permet d'économiser entre 25 et 35 % d'énergie primaire par rapport à une production séparée...

Ce livre complet permettra de comprendre le fonctionnement de la micro-cogénération et sa place dans l'habitat. Un véritable guide pour le particulier qui souhaitera économiser et réduire ses consommations électriques!

Un guide sur mesure pour réaliser de véritables économies. 99

llustrations de couverture © Antoine Delor

CHAUFFAGE ET PETITE COGÉNÉRATION

Marion Denninger

ÉDITIONS EYROLLES 61, bd Saint-Germain 75240 Paris Cedex 05 www.editions-eyrolles.com

Conception de la maquette intérieure : Dazibao

Mise en pages : FG Compo

En application de la loi du 11 mars 1957, il est interdit de reproduire intégralement ou partiellement le présent ouvrage, sur quelque support que ce soit, sans l'autorisation de l'Éditeur ou du Centre Français d'exploitation du droit de copie, 20, rue des Grands Augustins, 75006 Paris.

© Groupe Eyrolles, 2012, ISBN: 978-2-212-13368-4

Sommaire

Remerciements	1
Avant-propos	2
Introduction	5
Chapitre 1 - Principe et intérêts de la cogénération.	6
Association de deux énergies	6
Chaleur et électricité : différences	7
Énergie et performance	8
Profil des besoins énergétiques	9
Décentralisation de la production d'électricité	10
Quelles contraintes ?	11
L'équilibre production/besoins	11
Rentabilité financière	11
Chapitre 2 – Particularités de la micro-cogénération	ı 13
Gamme de puissance	13
Adéquation à la demande	13
Dimensionnement	15
Installation individuelle	16
Projet collectif	16
Site isolé	17

CHAUFFAGE ET PETITE COGÉNÉRATION

Chapitre 3 – Notions énergétiques	18
Thermique	18
Puissance d'un appareil	18
Énergie restituée	18
Déperditions thermiques	19
Données climatiques	20
Température de référenceDJUDJU	20 20
Calculs thermiques	21
Exemple	22
Consommation d'énergie primaire	22
Électricité	23
Rendement d'un cogénérateur	25
Chapitre 4 – Les différentes technologies	
des micro-cogénérateurs	26
Moteurs à combustion interne	26
Moteurs à combustion externe	28
Les moteurs Stirling	28
Les turbines à vapeur	33
Les micro-turbines	34
Les piles à combustibles	35
Les capteurs solaires hybrides	36
Chapitre 5 – Applications de la micro-cogénération	38
L'habitat	38
Tertiaire et petites industries	39
Immeubles de bureaux	39
Hôtellerie, maisons de retraite	40

Enseignement	
Piscines, centres de loisirs	
Commerces	
Hôpitaux, cliniques	
Petites industries	
L'agriculture	
Les serres	
Les élevages	
Chapitre 6 – Cogénération et énergies renouvelables	
Biomasse	
Gazogène	
Exemple d'installation	
Biogaz	
Huile végétale	
Solaire	
Les centrales à tour	
Les collecteurs cylindro-paraboliques	
Les collecteurs paraboliques (Dish concentrator)	
Chapitre 7 – Installation	
Logement individuel	
Taille des systèmes	
Raccordements	
Exemple	
Petit collectif	
Dimensionnement	
Site isolé	

CHAUFFAGE ET PETITE COGÉNÉRATION

Chapitre 8 – Contrat de vente de l'électricité	63
Réglementation	63
Démarches administratives	64
Déclaration d'exploiter	65
Certificat ouvrant droit à l'obligation d'achat	65
Démarches auprès d'ERDF	65
Dossier de demande de raccordement	67
Onglet Producteur	67
Onglet Mandataire : le cas échéant	67
Onglet Devis/Facturation	67
Onglet Site de production	67
Onglet Spécification production	68
Onglet Protection et OnduleurOnglet Finalisation	69 69
Contrat de raccordement, d'accès et d'exploitation (CRAE)	70
Proposition de raccordement (PDR)	70
Démarches auprès d'EDF OA	71
Tarif de l'électricité	71
Chapitre 9 - Bilans	72
Bilan financier	72
Bilan économique	73
Bilan environnemental	74
Chapitre 10 - Conclusions	76
Chapitre 11 - Annexes	78
Liste de DJU avec une température seuil de 18 °C	78
Carte des températures de base	80

SOMMAIRE

Liste des DREAL	81
Liste des agences ERDF	84
Modèle de déclaration d'exploiter	86
Modèle de demande de CODOA	89
Mandat spécial de représentation	92
Modèle de contrat d'achat	96
Conditions particulières	97
Chapitre 12 - Glossaire	103
Chapitre 13 – Fabricants de matériels	106
Sources et sites Internet	108
Index	109

Remerciements

Je souhaite remercier les personnes qui m'ont fait découvrir le domaine de la cogénération, partager leurs connaissances et qui m'ont encouragée à travailler sur le sujet.

Je remercie particulièrement Michel Feidt, pour son enthousiasme et sa faculté à initier des projets et à diffuser les expériences. Il est à l'origine de rencontres interdisciplinaires sur la micro-cogénération, très enrichissantes pour tous.

Toutes les personnes, professionnels et particuliers avertis, que j'ai rencontrées lors de salons, conférences, séminaires... m'ont également apporté un soutien précieux en renforçant ma motivation.

Je remercie également Anne Garcia qui m'a sollicitée pour la rédaction de ce document et m'a donné des conseils avisés.

Enfin, merci à ma famille pour leur aide et leurs remarques constructives.

Huant-propos

Dans le contexte mondial actuel, la maîtrise de l'énergie est une préoccupation majeure.

D'une part, les besoins des populations croissent continuellement. L'énergie électrique est de plus en plus nécessaire pour assurer le confort des personnes et le développement économique.

D'autre part, les États participant au sommet de Kyoto ont établi en 1997 des objectifs de réduction des gaz à effet de serre (GES). Il est indispensable de réduire les émissions de CO_2 , responsables en grande partie du réchauffement climatique.

Il faut donc dans le même temps limiter la croissance des besoins énergétiques en changeant les habitudes de consommation, en améliorant des processus de fabrication, et en mettant au point des matériels moins consommateurs ou utilisant les énergies renouvelables.

La production de CO_2 est principalement due à l'utilisation des énergies fossiles (charbon, pétrole, gaz) dans les systèmes actuels de production de chaleur et d'électricité. Le recours aux énergies renouvelables et le développement de la cogénération, qui valorise au mieux l'énergie primaire, sont des solutions à développer conjointement pour réduire l'émission de gaz à effet de serre.

En France, la production d'énergie renouvelable représente environ 15 % de la production énergétique totale.

Sur les 19 Mtep (millions de tonnes équivalent pétrole) d'origine renouvelable, voici la répartition par filière :