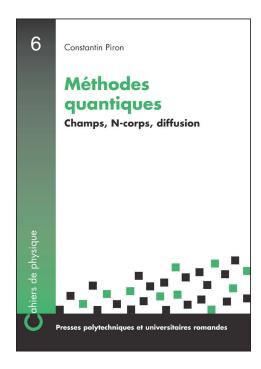

Théorie quantique des champs


Livre VI

Chez le même éditeur

LIVRE VI

Théorie quantique des champs

Ecran Suiv. Préc. Revient Va page Repart Table Portail Index Fermer Quitter

Table des matières

1	Not	ions et notations de la théorie des quanta	1
	1.1	Analyse des probabilités	1
	1.2	Principe d'incertitude	6
	1.3	Isomorphisme entre RHS et CHS	14
	1.4	Probabilités dans les formalismes CHS et RHS	18
	1.5	Représentations de Schrödinger et de Heisenberg	18
2	Obs	servables (multi-)locales en théorie classique	23
	2.1	Equations de Maxwell et groupe de Lorentz	23
	2.2	Transformation infinitésimale	24
3	Obs	servables en théorie des quanta	27
	3.1	Covariance et représentation	27
	3.2	Signature thermodynamique de $g^{\alpha\beta}$	29
	3.3	Constantes de structure d'un groupe de Lie	32
	3.4	Opérateur de densité d'énergie-quantité de mouvement	37
4	Thé	eorie du champ scalaire	39
	4.1	Définition du champ	39
	4.2	Règles de commutation générales	40
	4.3	L'opérateur de charge Q	43
	4.4	Conjugaison de charge et loi de commutation générale	45
	4.5	Spectre de Q	
	4.6	Spectre de Π_{μ}	47
	4.7	Développement en paquets d'ondes	48
	4.8	Quantification explicite	50
	_		

5	Cha	amp spinoriel quantifié	55
	5.1	L'espace spinoriel ϕ^A	55
	5.2	Equation de Dirac	59
	5.3	Les spineurs fondamentaux	61
	5.4	Quantification du champ spinoriel	63
	5.5	Opérateur de charge	65
	5.6	Conjuguaison de charge et relations de commutation générales	65
	5.7	Développement en paquets d'ondes	67
In	dex		71

Notions et notations de la théorie des quanta

Présentation

On commence ce livre par une analyse des probabilités dans l'espace de Hilbert réel (section 1) puis on discute du principe d'incertitude qui exige l'utilisation du nombre imaginaire en physique des quanta (section 2). L'isomorphisme entre l'espace de Hilbert réel et l'espace de Hilbert complexe est ensuite présenté à la section 3 et les projecteurs sont ensuite exposés à la section 4.

1.1 Analyse des probabilités

Soient deux observables F et G d'un système Σ , dont les ensembles (les spectres) des valeurs qu'elles peuvent prendre sont, pour simplifier, supposés discrets :

$$F: \{F^{(i)}\} = \{F^{(1)} < F^{(2)} < \dots < F^{(i)} < \dots < F^{(\omega_F)}\}\$$

$$G: \{G'^{(i)}\} = \{G'^{(i)} < G'^{(i)} < \dots < G'^{(i)} < \dots < G'^{(i)} < \dots < G^{(i)}\}.$$

En théorie classique, nous savons qu'à chaque état du système, les équations de mouvement permettent de calculer la valeur prise par les observables F et G. En théorie des quanta, il n'en est plus de même, il n'est possible de calculer que les probabilités $w^{(i)}$ ($w^{(i)}$) d'obtenir $F^{(i)}$ ($G^{(i)}$), $i=1,2,\ldots \omega_F$ $i=1,2,\ldots \omega_G$) si l'on effectue une mesure.

Par définition des probabilités nous devons avoir :

$$w^{(i)} \ge 0 \; ; \; \sum_{i=1}^{\omega_F} w^{(i)} = 1$$

$$w^{(i)} \ge 0 \; ; \; \sum_{i=1}^{\omega_G} w^{(i)} = 1.$$

Ecran Suiv. Préc. Revient Va page Repart Table Portail Index Fermer Quitter